11 research outputs found

    Increased expression of biodegradative threonine dehydratase of Escherichia coli by DNA gyrase inhibitors

    Full text link
    The synthesis of inducible biodegradative threonine dehydratase of Escherichia coli increased several-fold in the presence of the DNA gyrase inhibitors, nalidixic acid and coumermycin. Temperature-sensitive gyrB mutants expressed higher levels of dehydratase as compared to an isogenic gyrB+ strain. Immunoblotting experiments showed increased synthesis of the dehydratase protein in the presence of gyrase inhibitors; addition of rifampicin and chloramphenicol to cells actively synthesizing enzyme preventing new enzyme production. Increased expression of dehydratase by gyrase inhibitors was accompanied by relaxation of supercoiled DNA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27693/1/0000078.pd

    Chondroprotective Potential of Fruit Extracts of Phyllanthus emblica in Osteoarthritis

    Get PDF
    There is a need for effective nutraceuticals for osteoarthritis care. The fruit of Phyllanthus emblica is used as a powerful rejuvenator in Ayurvedic medicine. This study measured the chondroprotective potential of P. emblica (‘Amalaki’) fruits in vitro. We used aqueous extracts of unprocessed P. emblica fruit powder (powder A), and the powder obtained after hot water extraction and drying of powder A (powder B). Chondroprotection was measured in three different assay systems. First, we tested the effects of both fruit powders on the activities of the enzymes hyaluronidase and collagenase type 2. Second, an in vitro model of cartilage degradation was set-up with explant cultures of articular knee cartilage from osteoarthritis patients. Cartilage damage was assayed by measuring glycosaminoglycan release from explants treated with/without P. emblica fruit powders. Aqueous extracts of both fruit powders significantly inhibited the activities of hyaluronidase and collagenase type 2 in vitro. Third, in the explant model of cartilage matrix damage, extracts of glucosamine sulphate and powder B (0.05 mg/ml) exhibited statistically significant, long-term chondroprotective activity in cartilage explants from 50% of the patients tested. This result is important since glucosamine sulphate is the leading nutraceutical for osteoarthritis. Powder A induced a statistically significant, short-term chondroprotective activity in cartilage explants from all of the patients tested. This is the first study to identify and quantitate new chondroprotective activities of P. emblica fruits. These data provide pilot pre-clinical evidence for the use of P. emblica fruits as a chondroprotective agent in osteoarthritis therapy

    Microarray analysis of differentially expressed genes regulating lipid metabolism during melanoma progression

    No full text
    125-131A new hallmark of cancer involves acquisition of a lipogenic phenotype which promotes tumorigenesis. Little is known about lipid metabolism in melanomas. Therefore, we used BRB (Biometrics Research Branch) class comparison tool with multivariate analysis to identify differentially expressed genes in human cutaneous melanomas, compared with benign nevi and normal skin derived from the microarray dataset (GDS1375). The methods were validated by identifying known melanoma biomarkers (CITED1, FGFR2, PTPRF, LICAM, SPP1 and PHACTR1) in our results. Eighteen genes regulating metabolism of fatty acids, lipid second messengers and gangliosides were 2-9 fold upregulated in melanomas of GDS-1375. Out of the 18 genes, 13 were confirmed by KEGG pathway analysis and 10 were also significantly upregulated in human melanoma cell lines of NCI-60 Cell Miner database. Results showed that melanomas upregulated <i style="mso-bidi-font-style: normal">PPARGC1A transcription factor and its target genes regulating synthesis of fatty acids (SCD) and complex lipids (FABP3 and <i style="mso-bidi-font-style: normal">ACSL3). Melanoma also upregulated genes which prevented lipotoxicity (CPT2 and<i style="mso-bidi-font-style: normal"> ACOT7) and regulated lipid second messengers, such as phosphatidic acid (AGPAT-4, PLD3) and inositol triphosphate (ITPKB, ITPR3). Genes for synthesis of pro-tumorigenic GM3 and GD3 gangliosides (UGCG, HEXA, ST3GAL5 and ST8SIA1) were also upregulated in melanoma. Overall, the microarray analysis of GDS-1375 dataset indicated that melanomas can become lipogenic by upregulating genes, leading to increase in fatty acid metabolism, metabolism of specific lipid second messengers, and ganglioside synthesis

    Epigallocatechin gallate & curcumin prevent transforming growth factor beta 1-induced epithelial to mesenchymal transition in ARPE-19 cells

    No full text
    Background & objectives: Proliferative vitreoretinopathy (PVR) is characterized by the presence of epiretinal membrane (ERM), which exerts traction and detaches the retina. Epithelial to mesenchymal transition (EMT) of the retinal pigment epithelial (RPE) cells underlies ERM formation. Adjuvant therapies aimed at preventing recurrence of PVR after surgery mostly failed in clinical trials. This study was aimed to evaluate the anti-EMT properties of bio-active compounds epigallocatechin gallate (EGCG), curcumin and lycopene as inhibitors of EMT induced by transforming growth factor beta 1 (TGF-β1) in cultured ARPE-19 cells. Methods: ARPE-19 cells were treated with TGF-β1 alone or co-treated with EGCG (1-50 μM), lycopene (1-10 μM) and curcumin (1-10 μM). The mRNA and protein expression of EMT markers, alpha-smooth muscle actin, vimentin, zonula occludens-1 and matrix metalloproteinase-2 (MMP-2), were assessed by reverse transcription polymerase chain reaction/quantitative polymerase chain reaction and immunofluorescence/enzyme linked immunosorbent assay. Activity of MMP-2 was assessed by zymography. Functional implications of EMT were assessed by proliferation assay (MTT assay) and migration assay (scratch assay). Western-blot for phosphorylated Smad-3 and total Smad-3 was done to delineate the mechanism. Results: EGCG and curcumin at 10 μM concentration reversed EMT, inhibited proliferation and migration through Smad-3 phosphorylation, when induced by TGF-β1 in ARPE-19 cells. Lycopene did not prevent EMT in ARPE-19 cells. Interpretation & conclusions: EGCG and curcumin are potent in preventing EMT induced by TGF-β1 in ARPE-19 cells and therefore, proposed as potential molecules for further pre-clinical evaluation in PVR management

    Microarray Analysis of Differentially-Expressed Genes Encoding CYP450 and Phase II Drug Metabolizing Enzymes in Psoriasis and Melanoma

    No full text
    Cytochrome P450 drug metabolizing enzymes are implicated in personalized medicine for two main reasons. First, inter-individual variability in CYP3A4 expression is a confounding factor during cancer treatment. Second, inhibition or induction of CYP3A4 can trigger adverse drug–drug interactions. However, inflammation can downregulate CYP3A4 and other drug metabolizing enzymes and lead to altered metabolism of drugs and essential vitamins and lipids. Little is known about effects of inflammation on expression of CYP450 genes controlling drug metabolism in the skin. Therefore, we analyzed seven published microarray datasets, and identified differentially-expressed genes in two inflammatory skin diseases (melanoma and psoriasis). We observed opposite patterns of expression of genes regulating metabolism of specific vitamins and lipids in psoriasis and melanoma samples. Thus, genes controlling the turnover of vitamin D (CYP27B1, CYP24A1), vitamin A (ALDH1A3, AKR1B10), and cholesterol (CYP7B1), were up-regulated in psoriasis, whereas melanomas showed downregulation of genes regulating turnover of vitamin A (AKR1C3), and cholesterol (CYP39A1). Genes controlling abnormal keratinocyte differentiation and epidermal barrier function (CYP4F22, SULT2B1) were up-regulated in psoriasis. The up-regulated CYP24A1, CYP4F22, SULT2B1, and CYP7B1 genes are potential drug targets in psoriatic skin. Both disease samples showed diminished drug metabolizing capacity due to downregulation of the CYP1B1 and CYP3A5 genes. However, melanomas showed greater loss of drug metabolizing capacity due to downregulation of the CYP3A4 gene

    A bcl-xS Adenovirus Selectively Induces Apoptosis in Transformed Cells Compared to Normal Mammary Cells

    No full text
    Oncogenes which drive the cell cycle, such as c-myc, can sensitize cells to apoptosis. This suggests the possibility that the expression of genes such as bcl-2 or bcl-xL is required to inhibit apoptosis induced by oncogene expression. We hypothesized that inhibition of Bcl-2/Bcl-xL by the pro-apoptotic Bcl-xS protein, would result in selective induction of apoptosis in mammary carcinoma cells compared to their nontransformed counterparts. Therefore, we compared the effects of Bcl-xS expression delivered by a bcl-xS adenovirus (bcl-xS-Adv) vector, on viability and apoptosis of nontransformed versus transformed mammary epithelial cells. We report that c-myc-transformed murine mammary cells are extremely sensitive to apoptosis induced by the bcl-xS adenovirus (bcl-xS-Adv) vector, whereas immortalized, nontransformed murine mammary cells are relatively resistant to apoptosis induced by this vector. Likewise, human mammary epithelial cells transduced with c-erbB-2 were more sensitive to apoptosis induced by the bcl-xS vector than the nontransformed parental cells. Similar results were obtained when we tested the effects of bcl-xS adenoviral infection on primary normal human mammary epithelial cells and SUM-190 PT cells, (a c-erbB-2 over-expressing human mammary carcinoma cell line) grown on Matrigel. These data are consistent with the hypothesis that inhibition of Bcl-2/Bcl-xL can result in selective killing of cancer cells compared to their nontransformed counterparts
    corecore