4 research outputs found

    Electromigration behavior and reliability of bamboo Al(Cu) interconnects for integrated circuits

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1999.Includes bibliographical references (leaves 103-108).by V.T. Srikar.Ph.D

    Damage and failure mechanisms in high pressure silicon-glass-metal microfluidic connections

    No full text
    The characteristics and mechanisms of damage and failure in microfluidic joints consisting of Kovar metal tubes attached to silicon using borosilicate glass seals have been investigated. These joints are representative of seals for the MIT microrocket which is a silicon-based MEMS device. A key concern in such joints is the occurrence of cracks in silicon and glass due to residual stresses caused by a large thermal excursion during processing and the dissimilar coefficients of thermal expansion of the constituent materials. Joints with two types of glass compositions and joint configurations were fabricated, tested, and inspected. Axial tension tests were performed to investigate load carrying capability and the effect of thermally-induced cracks. Finite element models were used to obtain residual stresses due to the fabrication, and the location of the cracks from the experiments were found to coincide with the locations of the maximum principal stresses. The current work shows that the certain types of thermally-induced cracks are more detrimental to joint strength than others and a good bond between the Kovar tube and the silicon sidewall can help increase joint strength via shear load transfe

    Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell

    No full text
    Micromachined fuel cells are among a class of microscale devices being explored for portable power generation. In this paper, we report processing and geometric design criteria for the fabrication of free-standing electrolyte membranes for microscale solid-oxide fuel cells. Submicron, dense, nanocrystalline yttria-stabilized zirconia (YSZ) and gadolinium-doped ceria (GDC) films were deposited onto silicon nitride membranes using electron-beam evaporation and sputter deposition. Selective silicon nitride removal leads to free-standing, square, electrolyte membranes with side dimensions as large as 1025 µm for YSZ and 525 µm for GDC, with high processing yields for YSZ. Residual stresses are tensile (+85 to +235 MPa) and compressive (–865 to -155 MPa) in as-deposited evaporated and sputtered films, respectively. Tensile evaporated films fail via brittle fracture during annealing at temperatures below 773 K; thermal limitations are dependent on the film thickness to membrane size aspect ratio. Sputtered films with compressive residual stresses show superior mechanical and thermal stability than evaporated films. Sputtered 1025-µm membranes survive annealing at 773 K, which leads to the generation of tensile stresses and brittle fracture at elevated temperatures (923 K)
    corecore