810 research outputs found

    Smooth golden fleece and prickly golden fleece as potential new vegetables for the ready-to-eat production chain

    Get PDF
    Smooth golden fleece (Urospermum dalechampii (L.) F.W. Schmidt) and prickly golden fleece (Urospermum picroides (L.) Scop. ex F.W. Schmid) are two wild edible plants used in traditional cuisine and folk medicine. In this research, the domestication of both species was tested for the first time using a floating system and two plant densities (412 and 824 plants m−2) to evaluate yield and quality. Some quality traits were also compared in cultivated plants and wild ones gathered in grasslands. The results show that both species are suitable for cultivation, although prickly golden fleece showed highest total phenols (132 mg 100 g−1 fresh weight—f.w.) and total antioxidant activity (0.19 mg 100 g−1 f.w.). At low sowing density, smooth golden fleece showed a nitrate content of about 7200 mg kg−1 f.w., 38% higher than plants of the same species grown at high density and plants of prickly golden fleece. These results suggest that high density can be used to optimize yield in two harvests. By permitting modulation of nutrients and a product without soil residues, the floating system used in this study proved suitable for growing U. dalechhampii and U. picroides as new vegetables for the ready-to-eat production chain

    Gamma-ray observations of Supernova Remnants with Fermi -LAT data

    Get PDF
    After 8 years of data taking, the Large Area Telescope (LAT) onboard the Fermi satellite has shown an excellent capability to detect and observe Supernova Remnants (SNRs) from few hundred MeV up to few hundred GeV. It provides crucial information on physical processes happening at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the acceleration of primary Cosmic Rays. We interpreted the multiwavelength Spectral Energy Distribution (SED) of a sample of different types of SNRs, which have been observed by the Fermi-LAT. We show how the environment in which the supernova shock is propagating affects the interpretation of its SED. We evaluated the spectral features of the accelerated particle spectra and estimated the acceleration efficiency, as well as the maximum energy of accelerated particles

    Galactic science with Fermi -LAT

    Get PDF
    High energy γ-rays reveal extreme, non-thermal processes in the Universe. The Fermi Large Area Telescope (LAT) has been exploring the γ-ray sky for almost eight years, enabling the observation of many powerful events happening in our Galaxy. The wide energy range and field of view make the LAT a unique instrument to monitor the sky and study both powerful transient events and longterm phenomena. We present a review of the latest results obtained by the FermiLAT observation of Galactic object

    Minimally invasive (flapless) crown lengthening by erbium: YAG laser in aesthetic zone

    Get PDF
    Crown lengthening is a surgical procedure aimed at exposure of a larger tooth surface by gingivectomy alone or with cortical bone remodelling for aesthetic purposes in the anterior zone of the maxilla or for reconstruction of teeth affected by subgingival caries. We report two cases of crown lengthening in the anterior maxilla for aesthetic purposes by gingival and bone re-contouring performed by erbium-doped yttrium aluminium garnet (erbium:YAG) laser. As highlighted in this report, the erbium:YAG laser-assisted crown lengthening is less invasive and also leads to faster clinical outcomes in contrast to the conventional surgical technique by scalpel incision, flap elevation and osteoplastic

    Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties

    Get PDF
    Ice formation is a serious issue in many fields, from energy to aerospace, compromising the devices' efficiency and security. Superhydrophobicity has been demonstrated to be correlated to the anti-icing properties of surfaces. However, fabricating surfaces with robust water repellence properties also at subzero temperature is still a great challenge. In this work, femtosecond laser (fs-laser) texturing is exploited to produce superhydrophobic surfaces with anti-icing properties on Al2024, an aluminum alloy of great interest in cold environments, in particular for aircraft production. Our textured substrates present self-cleaning properties and robust water repellency at subzero temperatures. Moreover, outstanding anti-icing properties are achieved on the textured surfaces at-20 °C, with water droplets bouncing off the surface before freezing

    A minimally invasive technique for short spiral implant insertion with contextual crestal sinus lifting in the atrophic maxilla: A preliminary report

    Get PDF
    The most recently reported techniques for the rehabilitation of the atrophic posterior maxilla are increasingly less invasive, as they are generally oriented to avoid sinus floor elevation with lateral access. The authors describe a mini-invasive surgical technique for short spiral implant insertion for the prosthetic rehabilitation of the atrophic posterior maxilla, which could be considered a combination of several previously described techniques based on the under-preparation of the implant site to improve fixture primary stability and crestal approach to the sinus floor elevation without heterologous bone graft. Eighty short spiral implants were inserted in the molar area of the maxilla in patients with 4.5–6 mm of alveolar bone, measured on pre-operative computed tomography. The surgical technique involved careful drilling for the preparation of implant sites at differentiated depths, allowing bone dislocation in the apical direction, traumatic crestal sinus membrane elevation, and insertion of an implant (with spiral morphology) longer than pre-operative measurements. Prostheses were all single crowns. In all cases, a spiral implant 2–4 mm longer than the residual bone was placed. Only two implants were lost due to peri-implantitis but subsequently replaced and followed-up. Bone loss values around the implants after three months (at the re-opening) ranged from 0 to 0.6 mm, (median value: 0.1 mm), while after two years, the same values ranged from 0.4 to 1.3 mm (median value: 0.7 mm). Clinical post-operative complications did not occur. After ten years, no implant has been lost. Overall, the described protocol seems to show good results in terms of predictability and patient compliance

    Cosmic-ray interactions with the Sun

    Get PDF
    The solar disk is a bright gamma-ray source in the sky. The interactions of cosmic rays with the solar atmosphere produce secondary particles which can reach the Earth. In this work we present a comprehensive calculation of the yields of secondary particles such as gamma-rays, electrons, positrons, neutrons and neutrinos, performed with the FLUKA code. We also estimate the intensity at the Sun and the fluxes at the Earth of these secondary particles by folding their yields with the intensities of cosmic rays impinging on the solar surface. The results are sensitive to the assumptions on the magnetic field near the Sun and to the cosmic-ray transport in the magnetic field in the inner solar system
    corecore