36 research outputs found

    Hydraulic redistribution: limitations for plants in saline soils

    Get PDF
    Hydraulic redistribution (HR), the movement of water from wet to dry patches in the soil via roots, occurs in different ecosystems and plant species. By extension of the principle that HR is driven by gradients in soil water potential, HR has been proposed to occur for plants in saline soils. Despite the inherent spatial patchiness and salinity gradients in these soils, the lack of direct evidence of HR in response to osmotic gradients prompted us to ask the question: are there physical or physiological constraints to HR for plants in saline environments? We propose that build-up of ions in the root xylem sap and in the leaf apoplast, with the latter resulting in a large predawn disequilibrium of water potential in shoots compared with roots and soil, would both impede HR. We present a conceptual model that illustrates how processes in root systems in heterogeneous salinity with water potential gradients, even if equal to those in non-saline soils, will experience a dampened magnitude of water potential gradients in the soil–plant continuum, minimizing or preventing HR. Finally, we provide an outlook for understanding the relevance of HR for plants in saline environments by addressing key research questions on plant salinity toleranc

    Stockpiling disrupts the biological integrity of topsoil for ecological restoration

    Get PDF
    Purpose: Biotic and abiotic properties of soils can hinder or facilitate ecological restoration, and management practices that impact edaphic factors can strongly influence plant growth and restoration outcomes. Salvaged topsoil is an invaluable resource for mine-site restoration, and a common practice is topsoil transfer from mined areas to restoration sites. However, direct transfer is often not feasible, necessitating storage in stockpiles. We evaluated the effects of topsoil stockpiling on plant performance across diverse ecosystems impacted by mining throughout Western Australia. Methods: We conducted a bioassay experiment using a widespread native Acacia species to assess how topsoil storage might impact plant growth, physiology, and nodulation by N-fixing bacteria using soils from native reference vegetation and stockpiled soils from six mine sites across Western Australia. Results: Plant responses varied across mine sites, but overall plants performed better in soils collected from native vegetation, exhibiting greater biomass, more root nodules, and higher water-use efficiency compared to those grown in stockpiled soils. Soil physiochemistry showed few and minor differences between native soils and stockpiles. Conclusion: Results strongly suggest observed differences in plant performance were biotic in nature. This study highlights the negative effects of topsoil storage on the biological integrity of soil across diverse ecosystems, with important implications for mine-site restoration; our results show that topsoil management can strongly influence plant performance, and stockpiled soils are likely inferior to recently disturbed topsoil for restoration purposes. We also use this study to illustrate the utility of bioassays for assessing soil quality for ecological restoration

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Gender differences in respiratory symptoms in 19-year-old adults born preterm

    Get PDF
    Objective: To study the prevalence of respiratory and atopic symptoms in (young) adults born prematurely, differences between those who did and did not develop Bronchopulmonary Disease (BPD) at neonatal age and differences in respiratory health between males and females. Methods: Design: Prospective cohort study. Setting: Nation wide follow-up study, the Netherlands. Participants: 690 adults (19 year old) born with a gestational age below 32 completed weeks and/or with a birth weight less than 1500g. Controls were Dutch participants of the European Community Respiratory Health Survey (ECRHS). Main outcome measures: Presence of wheeze, shortness of breath, asthma, hay fever and eczema using the ECRHS-questionnaire

    Positive heterospecific interactions can increase long‐term diversity of plant communities more than negative conspecific interactions alone

    No full text
    Negative conspecific interactions have been shown to promote diversity in plant communities, as have some heterospecific interactions such as intransitive competition and facilitation. However, it is unclear whether combinations of conspecific and other heterospecific interactions can also promote diversity in plant communities. We therefore investigated the effects of heterospecific plant interaction network architecture with and without conspecific interactions on alpha diversity, beta diversity and long-term diversity. We simulated long-term plant community dynamics for theoretical plant interaction scenarios with modular, ring and nested networks of positive or negative heterospecific interactions and conspecific interactions, using a spatially explicit cellular automaton model that accounted for stochastic effects. Throughout the simulations several measures of diversity were recorded. The way that heterospecific interactions affected diversity depended strongly on various characteristics of the architecture of the interaction network. Negative conspecific interactions generally promoted alpha diversity and reduced beta diversity, with a few key exceptions. Positive heterospecific ring interactions that resulted in cyclic appearance and disappearance of species groups led to the greatest long-term diversity (a measure of the total diversity over time). This study provides new theoretical insights into how the network architecture of heterospecific plant interactions can affect the diversity of plant communities over time and provides the first evidence that heterospecific plant interactions can increase long-term diversity more than negative conspecific interactions alone

    Tree host–pathogen interactions as influenced by drought timing: linking physiological performance, biochemical defence and disease severity

    No full text
    There is increasing concern about tree mortality around the world due to climatic extremes and associated shifts in pest and pathogen dynamics. Yet, empirical studies addressing the interactive effect of biotic and abiotic stress on plants are very rare. Therefore, in this study, we examined the interaction between drought stress and a canker pathogen, Quambalaria coyrecup, on the eucalypt – Corymbia calophylla (marri), which is experiencing increasing drought stress. We hypothesized that drought stress would increase marri’s susceptibility to canker disease, and cankers would have the largest negative effect on plants that are already drought stressed before pathogen inoculation. To test the hypotheses, in a glasshouse, marri saplings were exposed to drought either before or after pathogen inoculation, or were well-watered or droughted throughout the experiment either with or without inoculation. Canker development was greater in well-watered saplings than in droughted saplings, with the fastest development occurring in well-watered saplings that had experienced drought stress before inoculation. Irrespective of water treatments, marri saplings employed phenol-based localized biochemical defence against the pathogen. Drought reduced photosynthesis and growth, however, a negative effect of canker disease on saplings’ physiological performance was only observed in well-watered saplings. In well-watered saplings, canker-induced loss of sapwood function contributed to reduced whole-plant hydraulic conductance, photosynthesis and growth. The results provide evidence that timing of drought stress influences host physiology, and host condition influences canker disease susceptibility through differences in induced biochemical defence mechanisms. The observations highlight the importance of explicitly incorporating abiotic and biotic stress, as well as their interactions, in future studies of tree mortality in drought-prone regions worldwide
    corecore