3 research outputs found

    Osmotic Dehydration as a Tool for Insdustrialization of Jabuticaba Peel (Myrciaria jabuticaba)

    Full text link
    This study evaluated the osmotic dehydration of jabuticaba peel for use as a by-product, with development of new food products. Response surface methodology was used, considering temperature and sucrose concentration as independent variables, assessing their effects on water loss, solid gain, mass loss, and solid gain rate. Sucrose concentration had a greater influence on osmotic process. Temperature increase is necessary in osmotic dehydration, once it leads to tissue softening, which is essential for dehydration of jabuticaba peel. Therefore, the best osmotic dehydration conditions were set at 60°C and 70 °Brix. With respect to the physicochemical characterization of the bioactive compounds of dehydrated jabuticaba peel, considerable amounts of sugars, anthocyanins, and phenolic compounds were observed, besides the antioxidant potential. Thus, dehydration of jabuticaba peel is a viable alternative to minimize the waste generated during harvest, being a product with high nutritional value

    Biotechnological Production of Carotenoids and Their Applications in Food and Pharmaceutical Products

    Get PDF
    Pigments can be divided into four categories: natural, nature-identical, synthetic, and inorganic colors. Artificial colorants are the most used in food and pharmaceutical industries because of their advantages related to color range, price, resistance to oxygen degradation, and solubility. However, many natural pigments present health-promoting activities that make them an interesting option for human use and consumption. Natural colorants are derived from sources such as plants, insects, and microorganisms. Carotenoids are natural pigments with important biological activities, such as antioxidant and pro-vitamin A activity, that can be either extracted from plants and algae or synthesized by various microorganisms, including bacteria, yeasts, filamentous fungi, and microalgae. Advantages of microbial production include the ability of microorganisms to use a wide variety of low cost substrates, the better control of cultivation, and the minimized production time. After fermentation, carotenoids are usually recovered by cell disruption, solvent extraction, and concentration. Subsequent purification steps are followed depending on the application. The most prominent industrial applications of carotenoids, considering their health benefits, are in the food, feed, and pharmaceutical industries
    corecore