5 research outputs found

    Polarization scramblers with plasmonic meander-type metamaterials

    Get PDF
    Due to plasmonic excitations, metallic meander structures exhibit an extraordinarily high transmission within a well-defined pass band. Within this frequency range, they behave like almost ideal linear polarizers, can induce large phase retardation between s- and p-polarized light and show a high polarization conversion efficiency. Due to these properties, meander structures can interact very effectively with polarized light. In this report, we suggest a novel polarization scrambler design using spatially distributed metallic meander structures with random angular orientations. The whole device has an optical response averaged over all pixel orientations within the incident beam diameter. We characterize the depolarizing properties of the suggested polarization scrambler with the Mueller matrix and investigate both single layer and stacked meander structures at different frequencies. The presented polarization scrambler can be flexibly designed to work at any wavelength in the visible range with a bandwidth of up to 100 THz. With our preliminary design, we achieve depolarization rates larger than 50% for arbitrarily polarized monochromatic and narrow-band light. Circularly polarized light could be depolarized by up to 95% at 600 THz

    Mission-level performance verification approach for the Euclid space mission

    Get PDF
    ESA's Dark Energy Mission Euclid will map the 3D matter distribution in our Universe using two Dark Energy probes: Weak Lensing (WL) and Galaxy Clustering (GC). The extreme accuracy required for both probes can only be achieved by observing from space in order to limit all observational biases in the measurements of the tracer galaxies. Weak Lensing requires an extremely high precision measurement of galaxy shapes realised with the Visual Imager (VIS) as well as photometric redshift measurements using near-infrared photometry provided by the Near Infrared Spectrometer Photometer (NISP). Galaxy Clustering requires accurate redshifts (∆z/(z+1)<0.1%) of galaxies to be obtained by the NISP Spectrometer. Performance requirements on spacecraft, telescope assembly, scientific instruments and the ground data-processing have been carefully budgeted to meet the demanding top level science requirements. As part of the mission development, the verification of scientific performances needs mission-level end-to-end analyses in which the Euclid systems are modeled from as-designed to final as-built flight configurations. We present the plan to carry out end-to-end analysis coordinated by the ESA project team with the collaboration of the Euclid Consortium. The plan includes the definition of key performance parameters and their process of verification, the input and output identification and the management of applicable mission configurations in the parameter database

    The Euclid mission design

    Get PDF
    23 pages, 19 figures, Presented at the SPIE Astronomical Telescopes and Instrumentation conference in Edinburgh, Scotland, United Kingdom, 6 June 1 July 2016International audienceEuclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    No full text
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data
    corecore