2,855 research outputs found

    Asymptotically free scalar curvature-ghost coupling in Quantum Einstein Gravity

    Full text link
    We consider the asymptotic-safety scenario for quantum gravity which constructs a non-perturbatively renormalisable quantum gravity theory with the help of the functional renormalisation group. We verify the existence of a non-Gaussian fixed point and include a running curvature-ghost coupling as a first step towards the flow of the ghost sector of the theory. We find that the scalar curvature-ghost coupling is asymptotically free and RG relevant in the ultraviolet. Most importantly, the property of asymptotic safety discovered so far within the Einstein-Hilbert truncation and beyond remains stable under the inclusion of the ghost flow.Comment: 8 pages, 3 figures, RevTe

    Slipping friction of an optically and magnetically manipulated microsphere rolling at a glass-water interface

    Full text link
    The motion of submerged magnetic microspheres rolling at a glass-water interface has been studied using magnetic rotation and optical tweezers combined with bright-field microscopy particle tracking techniques. Individual microspheres of varying surface roughness were magnetically rotated both in and out of an optical trap to induce rolling, along either plain glass cover slides or glass cover slides functionalized with polyethylene glycol. It has been observed that the manipulated microspheres exhibited nonlinear dynamic rolling-while-slipping motion characterized by two motional regimes: At low rotational frequencies, the speed of microspheres free-rolling along the surface increased proportionately with magnetic rotation rate; however, a further increase in the rotation frequency beyond a certain threshold revealed a sharp transition to a motion in which the microspheres slipped with respect to the external magnetic field resulting in decreased rolling speeds. The effects of surface-microsphere interactions on the position of this threshold frequency are posed and investigated. Similar experiments with microspheres rolling while slipping in an optical trap showed congruent results.Comment: submitted to Journal of Applied Physics, 11 figure

    The wall shear rate distribution for flow in random sphere packings

    Full text link
    The wall shear rate distribution P(gamma) is investigated for pressure-driven Stokes flow through random arrangements of spheres at packing fractions 0.1 <= phi <= 0.64. For dense packings, P(gamma) is monotonic and approximately exponential. As phi --> 0.1, P(gamma) picks up additional structure which corresponds to the flow around isolated spheres, for which an exact result can be obtained. A simple expression for the mean wall shear rate is presented, based on a force-balance argument.Comment: 4 pages, 3 figures, 1 table, RevTeX 4; significantly revised with significantly extended scop

    Towards a new classification of early-type galaxies: an integral-field view

    Get PDF
    In this proceeding we make use of the two-dimensional stellar kinematics of a representative sample of E and S0 galaxies obtained with the SAURON integral-field spectrograph to reveal that early-type galaxies appear in two broad flavours, depending on whether they exhibit clear large-scale rotation or not. We measure the level of rotation via a new parameter LambdaR and use it as a basis for a new kinematic classification that separates early-type galaxies into slow and fast rotators. With the aid of broad-band imaging we will reinforce this finding by comparing our kinematic results to the photometric properties of these two classes.Comment: 4 pages, 2 figures, to appear in "Pathways Through an Eclectic Universe", J. H. Knappen, T. J. Mahoney, and A. Vazedekis (Eds.), ASP Conf. Ser., 200

    The Fornax Deep Survey with VST. II. Fornax A: a two-phase assembly caught on act

    Get PDF
    As part of the Fornax Deep Survey with the ESO VLT Survey Telescope, we present new gg and rr bands mosaics of the SW group of the Fornax cluster. It covers an area of 3×23 \times 2 square degrees around the central galaxy NGC1316. The deep photometry, the high spatial resolution of OmegaCam and the large covered area allow us to study the galaxy structure, to trace stellar halo formation and look at the galaxy environment. We map the surface brightness profile out to 33arcmin (200\sim 200kpc 15Re\sim15R_e) from the galaxy centre, down to μg31\mu_g \sim 31 mag arcsec2^{-2} and μr29\mu_r \sim 29 mag arcsec2^{-2}. This allow us to estimate the scales of the main components dominating the light distribution, which are the central spheroid, inside 5.5 arcmin (33\sim33 kpc), and the outer stellar envelope. Data analysis suggests that we are catching in act the second phase of the mass assembly in this galaxy, since the accretion of smaller satellites is going on in both components. The outer envelope of NGC1316 still hosts the remnants of the accreted satellite galaxies that are forming the stellar halo. We discuss the possible formation scenarios for NGC1316, by comparing the observed properties (morphology, colors, gas content, kinematics and dynamics) with predictions from cosmological simulations of galaxy formation. We find that {\it i)} the central spheroid could result from at least one merging event, it could be a pre-existing early-type disk galaxy with a lower mass companion, and {\it ii)} the stellar envelope comes from the gradual accretion of small satellites.Comment: Accepeted for publication in Ap

    A study of rotating globular clusters - the case of the old, metal-poor globular cluster NGC 4372

    Full text link
    Aims: We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. Methods: We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. Using this kinematic data set we build a velocity dispersion profile and a systemic rotation curve. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a MCMC fitting algorithm. From this we derive the cluster's half-light radius and ellipticity as r_h=3.4'+/-0.04' and e=0.08+/-0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Results: Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5 km/s) for its metallicity. This, however, puts it in line with two other exceptional, very metal-poor GCs - M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC M_dyn=2.0+/-0.5 x 10^5 M_Sun based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M_Sun/L_Sun, representative of an old, purely stellar population.Comment: Accepted for publication in A&A, 12 pages, 14 figures, 2 table

    The SAURON project – XVII. Stellar population analysis of the absorption line strength maps of 48 early-type galaxies

    Get PDF
    The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyWe present a stellar population analysis of the absorption line strength maps for 48 early-type galaxies from the SAURON sample. Using the line strength index maps of Hβ, Fe5015 and Mg b, measured in the Lick/IDS system and spatially binned to a constant signal-to-noise ratio, together with predictions from up-to-date stellar population models, we estimate the simple stellar population-equivalent (SSP-equivalent) age, metallicity and abundance ratio [α/Fe] over a two-dimensional field extending up to approximately one effective radius. A discussion of calibrations and differences between model predictions is given. Maps of SSP-equivalent age, metallicity and abundance ratio [α/Fe] are presented for each galaxy. We find a large range of SSP-equivalent ages in our sample, of which ∼40 per cent of the galaxies show signs of a contribution from a young stellar population. The most extreme cases of post-starburst galaxies, with SSP-equivalent ages of ≤3 Gyr observed over the full field-of-view, and sometimes even showing signs of residual star formation, are restricted to low-mass systems (σe≤ 100 km s−1 or ∼2 × 1010 M⊙). Spatially restricted cases of young stellar populations in circumnuclear regions can almost exclusively be linked to the presence of star formation in a thin, dusty disc/ring, also seen in the near-UV or mid-IR on top of an older underlying stellar population. The flattened components with disc-like kinematics previously identified in all fast rotators are shown to be connected to regions of distinct stellar populations. These range from the young, still star-forming circumnuclear discs and rings with increased metallicity preferentially found in intermediate-mass fast rotators, to apparently old structures with extended disc-like kinematics, which are observed to have an increased metallicity and mildly depressed [α/Fe] ratio compared to the main body of the galaxy. The slow rotators, often harbouring kinematically decoupled components (KDC) in their central regions, generally show no stellar population signatures over and above the well-known metallicity gradients in early-type galaxies and are largely consistent with old (≥10 Gyr) stellar populations. Using radially averaged stellar population gradients we find in agreement with Spolaor et al. a mass–metallicity gradient relation where low-mass fast rotators form a sequence of increasing metallicity gradient with increasing mass. For more massive systems (above ∼3.5 × 1010 M⊙) there is an overall downturn such that metallicity gradients become shallower with increased scatter at a given mass leading to the most massive systems being slow rotators with relatively shallow metallicity gradients. The observed shallower metallicity gradients and increased scatter could be a consequence of the competition between different star formation and assembly scenarios following a general trend of diminishing gas fractions and more equal-mass mergers with increasing mass, leading to the most massive systems being devoid of ordered motion and signs of recent star formation.Peer reviewe

    A SAURON view of galaxies

    Full text link
    We have measured the two-dimensional kinematics and line-strength distributions of 72 representative nearby early-type galaxies, out to approximately one effective radius, with our panoramic integral-field spectrograph SAURON. The resulting maps reveal a rich variety in kinematical structures and linestrength distributions, indicating that early-type galaxies are more complex systems than often assumed. We are building detailed dynamical models for these galaxies, to derive their intrinsic shape and dynamical structure, and to determine the mass of the supermassive central black hole. Here we focus on two examples, the compact elliptical M32 and the E3 galaxy NGC4365. These objects represent two extreme cases: M32 has very regular kinematics which can be represented accurately by an axisymmetric model in which all stars rotate around the short axis, while NGC4365 is a triaxial galaxy with a prominent kinematically decoupled core, with an inner core that rotates about an axis that is nearly perpendicular to the rotation axis of the main body of the galaxy. Our dynamical models for these objects demonstrate that two-dimensional observations are essential for deriving the intrinsic orbital structure and dark matter content of galaxies.Comment: 7 pages (3 figures, full resolution Fig. 1 available at http://www.strw.leidenuniv.nl/~verolme/M32.ps). Contributed talk to the Athens Workshop on Galaxies and Chaos, Theory and Observations; Proceedings to appear in "Galaxies and Chaos", eds. G. Contopoulos and N. Vogli
    corecore