1,142 research outputs found
Optimisation of stochastic networks with blocking: a functional-form approach
This paper introduces a class of stochastic networks with blocking, motivated
by applications arising in cellular network planning, mobile cloud computing,
and spare parts supply chains. Blocking results in lost revenue due to
customers or jobs being permanently removed from the system. We are interested
in striking a balance between mitigating blocking by increasing service
capacity, and maintaining low costs for service capacity. This problem is
further complicated by the stochastic nature of the system. Owing to the
complexity of the system there are no analytical results available that
formulate and solve the relevant optimization problem in closed form.
Traditional simulation-based methods may work well for small instances, but the
associated computational costs are prohibitive for networks of realistic size.
We propose a hybrid functional-form based approach for finding the optimal
resource allocation, combining the speed of an analytical approach with the
accuracy of simulation-based optimisation. The key insight is to replace the
computationally expensive gradient estimation in simulation optimisation with a
closed-form analytical approximation that is calibrated using a single
simulation run. We develop two implementations of this approach and conduct
extensive computational experiments on complex examples to show that it is
capable of substantially improving system performance. We also provide evidence
that our approach has substantially lower computational costs compared to
stochastic approximation
Equivalences in design of experiments
The statistical theory of experimental designs was initiated by Fisher in the 1920s in the context of agricultural experiments performed at the Rothamsted Experimental Station. Applications of experimental designs in industry started in the 1930s, but really took off after World War II. The second half of the 20th century witnessed both a widespread application of experimental designs in industrial settings and tremendous advances in the mathematical and statistical theory. Recent technological developments in biology (DNA microarrays) and chemical engineering (high-throughput reactors) generated new challenges in experimental design. So experimental designs is a lively subject with a rich history from both an applied and theoretical point of view. This thesis is mainly an exploration of the mathematical framework underlying factorial designs, an important subclass of experimental designs. Factorial designs are probably the most widely used type of experimental designs in industry. The literature on experimental designs is either example-based with lack of general statements and clear definitions or so abstract that the link to real applications is lost. With this thesis we hope to contribute to closing this gap. By restricting ourselves to factorial designs it is possible to provide a framework which is mathematically rigorous yet applicable in practice. A mathematical framework for factorial designs is given in Chapter 2. Each of the subsequent chapters is devoted to a specific topic related to factorial designs. In Chapter 3 we study coding full factorial designs by finite Abelian groups. This idea was introduced by Fisher in the 1940s to study confounding. Confounding arises when one performs only a fraction of a full factorial design. Using the character theory of finite Abelian groups we show that definitions of so-called regular fractions given by Collombier (1996), Wu and Hamada (2000) and Pistone and Rogantin (2005) are equivalent. An important ingredient in our approach is the special role played by the cosets of the finite Abelian group. We moreover use character theory to prove that any regular fraction when interpreted as a coset is an orthogonal array of a certain strength related to the resolution of that fraction. This is a generalization of results by Rao and Bose for regular fractions of symmetric factorial designs with a prime power as the number of levels. The standard way to analyze factorial designs is analysis of variance. Diaconis and Viana have shown that the well-known sums of squares decomposition in analysis of variance for full factorial designs naturally arises from harmonic analysis on a finite Abelian group. We give a slight extension of their setup by developing the theoretical aspects of harmonic analysis of data structured on cosets of finite Abelian groups. In Chapter 4 we study the estimation of dispersion parameters in a mixed linear model. This is the common model behind modern engineering approaches to experimental design like the Taguchi approach. We give necessary and sufficient conditions for the existence of translation invariant unbiased estimators for the dispersion parameters in the mixed linear model. We show that the estimators for the dispersion parameters in Malley (1986) and Liao and Iyer (2000) are equivalent. In the 1980s Box and Meyer initiated the identification of dispersion effects from unreplicated factorial experiments. They did not give an explicit estimation procedure for the dispersion parameters. We show that the well-known estimators for dispersion effects proposed by Wiklander (1998), Liao and Iyer (2000) and Brenneman and Nair (2001) coincide for two-level full factorial designs and their regular fractions. Moreover, we give a definition for MINQUE estimator for the dispersion effects in two-level full factorial designs and show that the above estimators are MINQUE in this sense. Finally, in Chapter 5 we study a real-life industrial problem from a two-step production process. In this problem an intermediate product from step 1 is split into several parts in order to allow further processing in step 2. This type of situation is typically handled by using a split-plot design. However, in this specific example running a full factorial split-plot design was not feasible for economic reasons. We show how to apply recently developed analysis methods for fractional factorial split-plot designs developed by Bisgaard, Bingham and Sitter. Finally, we modified the algorithm in Franklin and Bailey (1977) to generate fractional factorial split-plot designs that identify a given set of effects while minimizing the number of required intermediate products
Max-weight scheduling across multiple timescales
Many systems consist of a mixture of various resource types that together support better performance relative to those with a single resource type. One important characteristic of these systems is the fact that the various comprising resource types can operate on different timescales, implying that the corresponding control decisions are not made simultaneously. To address the resulting scheduling problem, we present and analyze two variants of max-weight scheduling that are designed to deal with the different timescales of such systems
Per-site occupancy in the discrete parking problem
We consider the classical discrete parking problem, in which cars arrive uniformly at random on any two adjacent sites out of n sites on a line. An arriving car parks if there is no overlap with previously parked cars, and leaves otherwise. This process continues until there is no more space available for cars to park, at which point we may compute the jamming density En/n, which represents the expected fraction of occupied sites. We extend the classical results by not just considering the total expected number of cars parked, but also the probability of each site being occupied by a car. This we then use to provide an alternative derivation of the jamming density
Modelling user behaviour at a stochastic road traffic bottleneck
Congestion in road traffic has received substantial attention in the research literature. One popular approach to modelling congesting and user response is the seminal bottleneck model introduced by Vickrey [25]. Here traffic is modelled as a fluid, and all travellers are subject to cost for waiting, early departure, and late departure. The travellers' response to the congestion is captured by assuming that they arrive at the bottleneck according to a Wardrop equilibrium, meaning that no traveller can decrease its costs by shifting its arrival time. This model and its extensions have been extensively studied in the research literature, but ignore the fact that road traffic consists of individual travellers with uncertain arrival time and speed. While the fluid approach used in the Vickrey model may be correct when the number of travellers is large, it fails to yield accurate predictions for a small number of travellers.In the present paper we propose a stochastic version of the bottleneck model, that can also handle smaller number of travellers. We discuss the error made by the fluid approximation, and show that the Wardrop equilibrium results in highly varying costs when applied in the more realistic setting with stochasticity. We then discuss an algorithm for numerically computing the equilibrium arrival rate for the stochastic bottleneck model, and propose a closed-form estimation for this equilibrium. This can be used for future studies into the effect of stochasticity in these bottleneck models.</p
- …