18 research outputs found

    The afocal telescope optical design and tolerance analysis for the ESA ARIEL mission

    Get PDF
    ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three present candidates for the next ESA medium-class science mission (M4) to be launched in 2026. During its 3.5 years of scientific operations from L2 orbit, this mission will observe spectroscopically in the infrared (IR) a large population of known transiting planets in the neighbourhood of the Solar System. The aim is to enable a deep understanding of the physics and chemistry of these exoplanets. ARIEL is based on a 1-m class telescope ahead of a suite of instruments: two spectrometer channels covering the band 1.95 to 7.80 µm and four photometric channels (two wide and two narrow band) in the range 0.5 to 1.9 μm. The ARIEL optical design is conceived as a fore-module common afocal telescope that will feed the spectrometer and photometric channels. The telescope optical design is based on an eccentric pupil two-mirror classic Cassegrain configuration coupled to a tertiary paraboloidal mirror. An all-aluminum structure has been considered for the telescope layout, and a detailed tolerance analysis has been conducted to assess the telescope feasibility. This analysis has been done including the different parts of the realization and life of the instrument, from integration on-ground to in-flight stability during the scientific acquisitions. The primary mirror (M1) temperature will be monitored and finely tuned via an active thermal control system based on thermistors and heaters. The heaters will be switched on and off to maintain the M1 temperature within ±1K thanks to a proportional-integral-derivative (PID) controller

    The pre-launch characterization of SIMBIO-SYS/VIHI imaging spectrometer for the BepiColombo mission to Mercury. I. Linearity, radiometry, and geometry calibrations

    Get PDF
    Before integration aboard European Space Agency BepiColombo mission to Mercury, the visible and near infrared hyperspectral imager underwent an intensive calibration campaign. We report in Paper I about the radiometric and linearity responses of the instrument including the optical setups used to perform them. Paper II [F. Altieri et al., Rev. Sci. Instrum. 88, 094503 (2017)] will describe complementary spectral response calibration. The responsivity is used to calculate the expected instrumental signal-to-noise ratio for typical observation scenarios of the BepiColombo mission around Mercury. A description is provided of the internal calibration unit that will be used to verify the relative response during the instrument's lifetime. The instrumental spatial response functions as measured along and across the spectrometer's slit direction were determined by means of spatial scans performed with illuminated test slits placed at the focus of a collimator. The dedicated optical setup used for these measurements is described together with the methods used to derive the instrumental spatial responses at different positions within the 3 . 5 ° field of view and at different wavelengths in the 0.4-2.0 μm spectral range. Finally, instrument imaging capabilities and Modulated Transfer Function are tested by using a standard mask as a target

    SIMBIO-SYS Near Earth Commissioning Phase: a step forward toward Mercury

    Get PDF
    On December 2018, the Near Earth Commissioning Phase (NECP) has been place forSIMBIO-SYS (Spectrometers and Imagers for MPO BepiColombo Integrated Observatory - SYStem), the suite part of the scientific payload of the BepiColombo ESA-JAXA mission. SIMBIO-SYS is composed of three channels: the high resolution camera (HRIC), the stereo camera (STC) and the Vis/NIR spectrometer (VIHI) . During the NECP the three channels have been operated properly. For the three channels were checked the operativity and the performance. The commanded operations allowed to verify all the instrument functionalities demonstrating that all SIMBIO-SYS channels and subsystems work nominally. During this phase we also validated the Ground Segment Equipment (GSE) and the data analysis tools developed by the team

    Preliminary LSF and MTF determination for the stereo camera of the BepiColombo mission

    No full text
    In the context of a stereo-camera, measuring the image quality allows to define the accuracy of the 3D reconstruction. In fact, depending on the precision of the camera position data, on the kind of reconstruction algorithm, and on the adopted camera model, it determines the vertical accuracy of the reconstructed terrain model. Aim of this work is to describe the results and the method implemented to determine the Line Spread Function (LSF) of the Stereoscopic Channel (STC) of the SIMBIOSYS imaging system for the BepiColombo mission. BepiColombo is the cornerstone mission n.5 of the European Space Agency dedicated to the exploration of the innermost planet of the Solar System, Mercury, and it is expected to be launched in 2016. STC is a double push-frame single-detector camera composed by two identical sub-channels looking at \ub121\ub0 wrt the nadir direction. STC has been designed so to have many optical elements common to both sub-channels. Also the image focal plane is common to the sub-channels and this permits the use of a single detector for the acquisition of the two images, i.e. one for each viewing direction. Considering the novelty of the design, conceived to sustain a harsh environment and to be as compact as possible, the STC unit is very complex. To obtain the most accurate 3D reconstruction of the Mercury surface, a camera model as precise as possible is needed, and an ad-hoc calibration set-up has been designed to calibrate the instrument both from the usual geometrical and radiometrical points of view and more specifically for the instrument stereo capability. In this context LSF estimation was performed with a new method applying a particular oversampling approach for the curve fitting to determine at first the entire calibration system transfer function and at the end the optical properties of the single instrument

    Optical design and performance of the stereoscopic imaging channel for the ESA bepicolombo mission

    No full text
    The optical design of the Stereoscopic Imaging Channel for the Bepicolombo ESA mission will be presented. The design solutions will be described and the expected results will be compared to the ones measured on the flight model during the on-ground calibration

    Geometrical distortion calibration of the stereo camera for the BepiColombo mission to Mercury

    Get PDF
    none10siThe ESA-JAXA mission BepiColombo that will be launched in 2018 is devoted to the observation of Mercury, the innermost planet of the Solar System. SIMBIOSYS is its remote sensing suite, which consists of three instruments: the High Resolution Imaging Channel (HRIC), the Visible and Infrared Hyperspectral Imager (VIHI), and the Stereo Imaging Channel (STC). The latter will provide the global three dimensional reconstruction of the Mercury surface, and it represents the first push-frame stereo camera on board of a space satellite. Based on a new telescope design, STC combines the advantages of a compact single detector camera to the convenience of a double direction acquisition system; this solution allows to minimize mass and volume performing a push-frame imaging acquisition. The shared camera sensor is divided in six portions: four are covered with suitable filters; the others, one looking forward and one backwards with respect to nadir direction, are covered with a panchromatic filter supplying stereo image pairs of the planet surface. The main STC scientific requirements are to reconstruct in 3D the Mercury surface with a vertical accuracy better than 80 m and performing a global imaging with a grid size of 65 m along-track at the periherm. Scope of this work is to present the on-ground geometric calibration pipeline for this original instrument. The selected STC off-axis configuration forced to develop a new distortion map model. Additional considerations are connected to the detector, a Si-Pin hybrid CMOS, which is characterized by a high fixed pattern noise. This had a great impact in pre-calibration phases compelling to use a not common approach to the definition of the spot centroids in the distortion calibration process. This work presents the results obtained during the calibration of STC concerning the distortion analysis for three different temperatures. These results are then used to define the corresponding distortion model of the camera.noneSimioni, Emanuele; Da Deppo, Vania; Re, Cristina; Naletto, Giampiero; Martellato, Elena; Borrelli, Donato; Dami, Michele; Aroldi, Gianluca; Ficai Veltroni, Iacopo; Cremonese, GabrieleSimioni, Emanuele; DA DEPPO, Vania; Re, Cristina; Naletto, Giampiero; Martellato, Elena; Borrelli, Donato; Dami, Michele; Aroldi, Gianluca; Ficai Veltroni, Iacopo; Cremonese, Gabriel

    SIMBIOSYS-STC ready for launch: a technical recap

    No full text
    BepiColombo is the first ambitious, multi-spacecraft mission of ESA/JAXA to Mercury. It will be launched in October 2018 from Kourou, French Guiana, starting a 7-year journey, which will bring its modules to the innermost planet of the solar system. The Stereo Camera (STC) is part of the SIMBIO-SYS instrument, the Italian suite for imaging in visible and near infrared which is mounted on the BepiColombo European module, i.e. the Mercury Planetary Orbiter (MPO). STC represents the first push-frame stereo camera on board of an ESA satellite and its main objective is the global three-dimensional reconstruction of the Mercury surface. The harsh environment around Mercury and the new stereo acquisition concept adopted for STC pushed our team to conceive a new design for the camera and to carry out specific calibration activities to validate its photogrammetric performance. Two divergent optical channels converging the collected light onto a unique optical head, consisting in an off-axis telescope, will provide images of the surface with an on-ground resolution at periherm of 58 m and a vertical precision of 80 m. The observation strategies and operation procedures have been designed to optimize the data-volume and guarantee the global mapping considering the MPO orbit. Multiple calibrations have been performed on-ground and they will be repeated during the mission to improve the instrument performance: the dark side of the planet will be exploited for dark calibrations while stellar fields will be acquired to perform geometrical and radiometric calibrations

    Performance evaluation of the SIMBIO-SYS Stereo Imaging Channel on board BepiColombo/ESA spacecraft

    No full text
    The Stereo Imaging Channel (STC) is one of the channels of the Spectrometer and Imagers for MPO BepiColombo Integrated Observatory SYStem (SIMBIO-SYS) onboard the ESA BepiColombo mission to Mercury. STC is a double wide-angle camera designed to image each portion of the Mercury surface from two different lines of sights, whose main aim is to provide panchromatic stereo-image pairs required to generate the Digital Terrain Model (DTM) reconstruction. In addition, selected surface areas will be acquired in color. This work presents the expected STC on-ground and in-flight performance describing the preliminary evaluation of some key parameters: the optical performance, the on-ground resolution and detector response, the achievable Signal to Noise Ratio (SNR) for different integration times and observation strategies and the global coverage of panchromatic filters during the entire scientific phase. The estimation of the SNR has been made using the STC radiometric model with Hapke reflectance model for Mercury surface and the SPICE toolkit software. The SPICE toolkit software with kernel for BepiColombo mission has been used also for the estimation of the on-ground pixel dimension and the global coverage all over the mission

    Characterization of the integrating sphere for the on-ground calibration of the SIMBIOSYS instrument for the BepiColombo ESA mission

    No full text
    SIMBIOSYS is a highly integrated instrument suite that will be mounted on-board BepiColombo, which is the fifth cornerstone mission of the European Space Agency dedicated to the exploration of the planet Mercury and it is expected to be launched in 2016. The SIMBIOSYS instrument consists of three channels: the STereo imaging Channel (STC), with broad spectral bands in the 400\u2013950 nm range and medium spatial resolution (up to 50 m/px); the High Resolution Imaging Channel (HRIC), with broad spectral bands in the 400\u2013900 nm range and high spatial resolution (up to 5 m/px), and the Visible and near- Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (up to 6 nm) in the 400\u20132000 nm range and spatial resolution up to 100 m/px. The on-ground calibration system has to cover the full spectral range of the instrument, i.e. from 400 to 2000 nm, and the emitted radiance has to vary over a range of four decades to account for both simulations of Mercury surface acquisition and star field observations. The methods and the results of the measurements done to calibrate the integrating sphere needed for the on-ground radiometric testing of the SIMBIOSYS instrument will be given and discussed. Temporal stability, both on short and long periods, spatial and spectral uniformity, and the emitted radiance for different lamp configurations and different shutter apertures have been measured. The results of the data analysis confirm that the performance of the integrating sphere is well suited for the radiometric calibration of all the three different channels of the SIMBIOSYS instrument
    corecore