5 research outputs found

    Nuclear poly(A)-binding protein 1 is an ATM target and essential for DNA double-strand break repair

    Get PDF
    The DNA damage response (DDR) is an extensive signaling network that is robustly mobilized by DNA double-strand breaks (DSBs). The primary transducer of the DSB response is the protein kinase, ataxia-telangiectasia, mutated (ATM). Here, we establish nuclear poly(A)-binding protein 1 (PABPN1) as a novel target of ATM and a crucial player in the DSB response. PABPN1 usually functions in regulation of RNA processing and stability. We establish that PABPN1 is recruited to the DDR as a critical regulator of DSB repair. A portion of PABPN1 relocalizes to DSB sites and is phosphorylated on Ser95 in an ATM-dependent manner. PABPN1 depletion sensitizes cells to DSB-inducing agents and prolongs the DSB-induced G2/M cell-cycle arrest, and DSB repair is hampered by PABPN1 depletion or elimination of its phosphorylation site. PABPN1 is required for optimal DSB repair via both nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR), and specifically is essential for efficient DNA-end resection, an initial, key step in HRR. Using mass spectrometry analysis, we capture DNA damage-induced interactions of phospho-PABPN1, including well-established DDR players as well as other RNA metabolizing proteins. Our results uncover a novel ATM-dependent axis in the rapidly growing interface between RNA metabolism and the DDR

    UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors

    Get PDF
    Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors

    Nuclear poly(A)-binding protein 1 is an ATM target and essential for DNA double-strand break repair

    No full text
    The DNA damage response (DDR) is an extensive signaling network that is robustly mobilized by DNA double-strand breaks (DSBs). The primary transducer of the DSB response is the protein kinase, ataxia-telangiectasia, mutated (ATM). Here, we establish nuclear poly(A)-binding protein 1 (PABPN1) as a novel target of ATM and a crucial player in the DSB response. PABPN1 usually functions in regulation of RNA processing and stability. We establish that PABPN1 is recruited to the DDR as a critical regulator of DSB repair. A portion of PABPN1 relocalizes to DSB sites and is phosphorylated on Ser95 in an ATM-dependent manner. PABPN1 depletion sensitizes cells to DSB-inducing agents and prolongs the DSB-induced G2/M cell-cycle arrest, and DSB repair is hampered by PABPN1 depletion or elimination of its phosphorylation site. PABPN1 is required for optimal DSB repair via both nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR), and specifically is essential for efficient DNA-end resection, an initial, key step in HRR. Using mass spectrometry analysis, we capture DNA damage-induced interactions of phospho-PABPN1, including well-established DDR players as well as other RNA metabolizing proteins. Our results uncover a novel ATM-dependent axis in the rapidly growing interface between RNA metabolism and the DDRWork in Y.S. laboratory is funded by research grants from the Dr Miriam and Sheldon G. Adelson Medical Research Foundation; The A-T Children's Project; The Israel Science Foundation (Joint ISF-NSFC Program with the National Natural Science Foundation of China); The Israel Cancer Research Fund; Work in P.H. lab was supported by R+D+I grant from the Spanish Ministry of Economy and Competitivity [SAF2013-43255-P]; ERC Starting Grant [DSBRECA]; PhD fellowship from the Spanish Ministry of Education (FPU to R.P.-C.); The R.A. lab is supported by NWO grant [NGI 93512001 to R.A.]; The Human Frontier Science Program [LT000640/2013 to A.P.U.]; The work in T.G. lab was supported by The I-CORE Program of the Planning and Budgeting Committee of the Israel Ministry of Education; Y.S. is a Research Professor of the Israel Cancer Research Fund. Funding for open access charge: research grant money.Peer reviewe

    UBQLN4 Represses Homologous Recombination and Is Overexpressed in Aggressive Tumors

    No full text
    Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.Control of MRE11 association with chromatin by UBQLN4 during double-strand break repair influences repair pathway choice and can be dysregulated in tumorigenesis.This work was funded through the Dr. M. and S.G. Adelson Medical Research Foundation, The Israel Science Foundation joint ISF-NSFC Research Program and The Israel Cancer Research Fund (to Y.S.), the German-Israeli Foundation for Research and Development (I-65-412.20-2016 to Y.S. and H.C.R.), the Deutsche Forschungsgemeinschaft (KFO-286-RP2 to H.C.R., KFO-286-CP2 to M.P., JA2439/1-1 to R.D.J., DI1731/2-1 to F.D.), the Else Kröner-Fresenius Stiftung (2014-A06 to H.C.R., 2016_Kolleg.19 to R.D.J.), the Deutsche Krebshilfe (1117240 to H.C.R. and the Mildred-Scheel Professorship to M.P.), the German Ministry of Education and Research (BMBF 01GM1211B to D.W., BMBF e:Med 01ZX1303A and 01ZX1406 to M.P., BMBF e:Med 01ZX1303 and 01ZX1307 to M.F.), and R+D+I grants from the Spanish Ministry of Economy and Competitivity (SAF2013-43255-P and SAF2016-74855-P to P.H.). Y.S. is a Research Professor of the Israel Cancer Research Fund
    corecore