695 research outputs found
Influence of generalized focusing of few-cycle Gaussian pulses in attosecond pulse generation
In contrast to the case of quasi-monochromatic waves, a focused optical pulse
in the few-cycle limit may exhibit two independent curved wavefronts,
associated with phase and group retardations, respectively. Focusing optical
elements will generally affect these two wavefronts differently, thus leading
to very different behavior of the pulse near focus. As limiting cases, we
consider an ideal diffractive lens introducing only phase retardations and a
perfect non-dispersive refractive lens (or a curved mirror) introducing equal
phase and group retardations. We study the resulting diffraction effects on the
pulse, finding both strong deformations of the pulse shape and shifts in the
spectrum. We then show how important these effects can be in highly nonlinear
optics, by studying their role in attosecond pulse generation. In particular,
the focusing effects are found to affect substantially the generation of
isolated attosecond pulses in gases from few-cycle fundamental optical fields.Comment: 8 pages and 6 figure
Optical emission investigation of laser-produced MgB2 plume expanding in an Ar buffer gas
Optical emission spectroscopy is used to study the dynamics of the plasma
generated by pulsed-laser irradiation of a MgB2 target, both in vacuum and at
different Ar buffer gas pressures. The analysis of the time-resolved emission
of selected species shows that the Ar background gas strongly influences the
plasma dynamics. Above a fixed pressure, plasma propagation into Ar leads to
the formation of blast waves causing both a considerable increase of the
fraction of excited Mg atoms and a simultaneous reduction of their kinetic flux
energy. These results can be particularly useful for optimizing MgB2 thin film
deposition processes.Comment: 11 pages,4 figures, Applied Physics Letters in pres
Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages
open access articlePurpose: The use of bacteriophages represents a valid alternative to conventional antimicrobial treatments, overcoming the widespread bacterial antibiotic resistance phenomenon. In this work, we evaluated whether biomimetic hydroxyapatite (HA) nanocrystals are able to enhance some properties of bacteriophages. The final goal of this study was to demonstrate that biomimetic HA nanocrystals can be used for bacteriophage delivery in the context of bacterial infections, and contribute – at the same time – to enhance some of the biological properties of the same bacteriophages such as stability, preservation, antimicrobial activity, and so on.
Materials and methods: Phage isolation and characterization were carried out by using Mitomycin C and following double-layer agar technique. The biomimetic HA water suspension was synthesized in order to obtain nanocrystals with plate-like morphology and nanometric dimensions. The interaction of phages with the HA was investigated by dynamic light scattering and Zeta potential analyses. The cytotoxicity and intracellular killing activities of the phage–HA complex were evaluated in human hepatocellular carcinoma HepG2 cells. The bacterial inhibition capacity of the complex was assessed on chicken minced meat samples infected with Salmonella Rissen.
Results: Our data highlighted that the biomimetic HA nanocrystal–bacteriophage complex was more stable and more effective than phages alone in all tested experimental conditions.
Conclusion: Our results evidenced the important contribution of biomimetic HA nanocrystals: they act as an excellent carrier for bacteriophage delivery and enhance its biological characteristics. This study confirmed the significant role of the mineral HA when it is complexed with biological entities like bacteriophages, as it has been shown for molecules such as lactoferrin
Reduced swimming performance repeatedly evolves on loss of migration in landlocked populations of alewife
Author Posting. © University of Chicago, 2018. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in Physiological and Biochemical Zoology 91 (2018):814–825, doi:10.1086/696877.Whole-organism performance tasks are accomplished by the integration of morphological traits and physiological functions. Understanding how evolutionary change in morphology and physiology influences whole-organism performance will yield insight into the factors that shape its own evolution. We demonstrate that nonmigratory populations of alewife (Alosa pseudoharengus) have evolved reduced swimming performance in parallel, compared with their migratory ancestor. In contrast to theoretically and empirically based predictions, poor swimming among nonmigratory populations is unrelated to the evolution of osmoregulation and occurs despite the fact that nonmigratory alewives have a more fusiform (torpedo-like) body shape than their ancestor. Our results suggest that elimination of long-distance migration from the life cycle has shaped performance more than changes in body shape and physiological regulatory capacity.Funding was provided by the University of Connecticut’s
Department of Ecology and Evolutionary Biology and El
Muy Viejo.2019-01-3
Reduced swimming performance repeatedly evolves on loss of migration in landlocked populations of alewife
Author Posting. © University of Chicago, 2018. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in Physiological and Biochemical Zoology 91 (2018):814–825, doi:10.1086/696877.Whole-organism performance tasks are accomplished by the integration of morphological traits and physiological functions. Understanding how evolutionary change in morphology and physiology influences whole-organism performance will yield insight into the factors that shape its own evolution. We demonstrate that nonmigratory populations of alewife (Alosa pseudoharengus) have evolved reduced swimming performance in parallel, compared with their migratory ancestor. In contrast to theoretically and empirically based predictions, poor swimming among nonmigratory populations is unrelated to the evolution of osmoregulation and occurs despite the fact that nonmigratory alewives have a more fusiform (torpedo-like) body shape than their ancestor. Our results suggest that elimination of long-distance migration from the life cycle has shaped performance more than changes in body shape and physiological regulatory capacity.Funding was provided by the University of Connecticut’s
Department of Ecology and Evolutionary Biology and El
Muy Viejo.2019-01-3
Measurement of the two-photon absorption cross-section of liquid argon with a time projection chamber
This paper reports on laser-induced multiphoton ionization at 266 nm of
liquid argon in a time projection chamber (LAr TPC) detector. The electron
signal produced by the laser beam is a formidable tool for the calibration and
monitoring of next-generation large-mass LAr TPCs. The detector that we
designed and tested allowed us to measure the two-photon absorption
cross-section of LAr with unprecedented accuracy and precision:
sigma_ex=(1.24\pm 0.10stat \pm 0.30syst) 10^{-56} cm^4s{-1}.Comment: 15 pages, 9 figure
Detection of parathion and patulin by quartz-crystal microbalance functionalized by the photonics immobilization technique
Oriented antibodies are tethered on the gold surface of a quartz crystal microbalance through the
photonics immobilization technique so that limit of detection as low as 50 nM and 140 nM are achieved
for parathion and patulin, respectively. To make these small analytes detectable by the microbalance,
they have been weighed down through a “sandwich protocol” with a second antibody. The specificity
against the parathion has been tested by checking the immunosensor response to a mixture of
compounds similar to parathion, whereas the specificity against the patulin has been tested with a real
sample from apple puree. In both cases, the results are more than satisfactory suggesting interesting
outlook for the proposed device
Theoretical description of adiabatic laser alignment and mixed-field orientation: the need for a non-adiabatic model
We present a theoretical study of recent laser-alignment and
mixed-field-orientation experiments of asymmetric top molecules. In these
experiments, pendular states were created using linearly polarized strong ac
electric fields from pulsed lasers in combination with weak electrostatic
fields. We compare the outcome of our calculations with experimental results
obtained for the prototypical large molecule benzonitrile (CHN) [J.L.
Hansen et al, Phys. Rev. A, 83, 023406 (2011)] and explore the directional
properties of the molecular ensemble for several field configurations, i.e.,
for various field strengths and angles between ac and dc fields. For
perpendicular fields one obtains pure alignment, which is well reproduced by
the simulations. For tilted fields, we show that a fully adiabatic description
of the process does not reproduce the experimentally observed orientation, and
it is mandatory to use a diabatic model for population transfer between
rotational states. We develop such a model and compare its outcome to the
experimental data confirming the importance of non-adiabatic processes in the
field-dressed molecular dynamics.Comment: 11 pages, 9 figure
Growth methods of c-axis oriented MgB2 thin films by pulsed laser deposition
High quality MgB2 thin films have been obtained by pulsed laser deposition
both on MgO and on Al2O3 substrates using different methods. In the standard
two-step procedure, an amorphous precursor layer is deposited at room
temperature starting both from stoichiometric target and from boron target:
after this first step, it is annealed in magnesium atmosphere in order to
crystallize the superconducting phase. The so obtained films show a strong
c-axis orientation, evidenced by XRD analysis, a critical temperature up to 38
K and very high critical fields along the basal planes, up to 22T at 15K. Also
an in situ one step technique for the realization of superconducting MgB2 thin
films has been developed. In this case, the presence of an argon buffer gas
during deposition is crucial and we observe a strong dependence of the quality
of the deposited film on the background gas pressure. The influence of the Ar
atmosphere has been confirmed by time and space-resolved spectroscopy
measurements on the emission spectrum of the plume. The Ar pressure modifies
strongly the plasma kinetics by promoting excitation and ionization of the
plume species, especially of the most volatile Mg atoms, increasing their
internal energy.Comment: Paper presented at Boromag Workshop, Genoa 17-19 June 2002, in press
on SUS
- …
