91 research outputs found
Helium Ion Microscopy
Helium Ion Microcopy (HIM) based on Gas Field Ion Sources (GFIS) represents a
new ultra high resolution microscopy and nano-fabrication technique. It is an
enabling technology that not only provides imagery of conducting as well as
uncoated insulating nano-structures but also allows to create these features.
The latter can be achieved using resists or material removal due to sputtering.
The close to free-form sculpting of structures over several length scales has
been made possible by the extension of the method to other gases such as Neon.
A brief introduction of the underlying physics as well as a broad review of the
applicability of the method is presented in this review.Comment: Revised versio
Quantum transport in two- and one-dimensional graphene
In haar proefschrift presenteert Alina Veligura onderzoek naar kwantumtransport in grafeen. Zij onderzocht de sensor-eigenschappen van een standaard grafeen FET (Field Effect Transistor) op een SiO2-substraat. Hiervoor ontwikkelde ze een nieuwe methode voor de fabricage van FETs. Ultrahoge ladingsmobiliteit werd aangetoond. Veligura was de eerste die ballistisch transport en gekwantiseerde geleiding in vrij zwevend grafeen kon waarnemen. Verder onderzocht ze de magnetoweerstand en elektron-elektron interacties in vrij zwevend dubbellaagsgrafeen; effecten die mogelijk invloed hebben op het elektronisch spectrum van zulke dubbellaagssysteme
Channeling in helium ion microscopy: Mapping of crystal orientation
Background: The unique surface sensitivity and the high resolution that can be achieved with helium ion microscopy make it a\ud
competitive technique for modern materials characterization. As in other techniques that make use of a charged particle beam, channeling\ud
through the crystal structure of the bulk of the material can occur.\ud
Results: Here, we demonstrate how this bulk phenomenon affects secondary electron images that predominantly contain surface\ud
information. In addition, we will show how it can be used to obtain crystallographic information. We will discuss the origin of\ud
channeling contrast in secondary electron images, illustrate this with experiments, and develop a simple geometric model to predict\ud
channeling maxima.\ud
Conclusion: Channeling plays an important role in helium ion microscopy and has to be taken into account when trying to achieve\ud
maximum image quality in backscattered helium images as well as secondary electron images. Secondary electron images can be\ud
used to extract crystallographic information from bulk samples as well as from thin surface layers, in a straightforward manner
Transport Gap in Suspended Bilayer Graphene at Zero Magnetic Field
We report a change of three orders of magnitudes in the resistance of a
suspended bilayer graphene flake which varies from a few ks in the high
carrier density regime to several Ms around the charge neutrality point
(CNP). The corresponding transport gap is 8 meV at 0.3 K. The sequence of
appearing quantum Hall plateaus at filling factor followed by
suggests that the observed gap is caused by the symmetry breaking of the lowest
Landau level. Investigation of the gap in a tilted magnetic field indicates
that the resistance at the CNP shows a weak linear decrease for increasing
total magnetic field. Those observations are in agreement with a spontaneous
valley splitting at zero magnetic field followed by splitting of the spins
originating from different valleys with increasing magnetic field. Both, the
transport gap and field response point toward spin polarized layer
antiferromagnetic state as a ground state in the bilayer graphene sample. The
observed non-trivial dependence of the gap value on the normal component of
suggests possible exchange mechanisms in the system.Comment: 8 pages, 5 figure
Imaging ultra thin layers with helium ion microscopy: Utilizing the channeling contrast mechanism
Background: Helium ion microscopy is a new high-performance alternative to classical scanning electron microscopy. It provides superior resolution and high surface sensitivity by using secondary electrons.\ud
\ud
Results: We report on a new contrast mechanism that extends the high surface sensitivity that is usually achieved in secondary electron images, to backscattered helium images. We demonstrate how thin organic and inorganic layers as well as self-assembled monolayers can be visualized on heavier element substrates by changes in the backscatter yield. Thin layers of light elements on heavy substrates should have a negligible direct influence on backscatter yields. However, using simple geometric calculations of the opaque crystal fraction, the contrast that is observed in the images can be interpreted in terms of changes in the channeling probability.\ud
\ud
Conclusion: The suppression of ion channeling into crystalline matter by adsorbed thin films provides a new contrast mechanism for HIM. This dechanneling contrast is particularly well suited for the visualization of ultrathin layers of light elements on heavier substrates. Our results also highlight the importance of proper vacuum conditions for channeling-based experimental methods\u
Material characterization and modification using helium ion microscopy: various examples
This thesis describes several approaches for material characterization using helium ion microscopy (HIM). Furthermore, it also demonstrates a possibility for in-situ observation and investigation of material modification and defect creation. This has been done using He+ ions with an energy of several tens of keV. The influence of a sub-nanometer He+ ion beam on different classes of materials, such as metals, semiconductors and insulators, was studied in the current work
Linear scaling between momentum and spin scattering in graphene
Spin transport in graphene carries the potential of a long spin diffusion
length at room temperature. However, extrinsic relaxation processes limit the
current experimental values to 1-2 um. We present Hanle spin precession
measurements in gated lateral spin valve devices in the low to high (up to
10^13 cm^-2) carrier density range of graphene. A linear scaling between the
spin diffusion length and the diffusion coefficient is observed. We measure
nearly identical spin- and charge diffusion coefficients indicating that
electron-electron interactions are relatively weak and transport is limited by
impurity potential scattering. When extrapolated to the maximum carrier
mobilities of 2x10^5 cm^2/Vs, our results predict that a considerable increase
in the spin diffusion length should be possible
Spin transport in high quality suspended graphene devices
We measure spin transport in high mobility suspended graphene (\mu ~ 10^5
cm^2/Vs), obtaining a (spin) diffusion coefficient of 0.1 m^2/s and giving a
lower bound on the spin relaxation time (\tau_s ~ 150 ps) and spin relaxation
length (\lambda_s=4.7 \mu m) for intrinsic graphene. We develop a theoretical
model considering the different graphene regions of our devices that explains
our experimental data.Comment: 22 pages, 6 figures; Nano Letters, Article ASAP (2012)
(http://pubs.acs.org/doi/abs/10.1021/nl301050a
Electronic spin transport in graphene field effect transistors
Spin transport experiments in graphene, a single layer of carbon atoms,
indicate spin relaxation times that are significantly shorter than the
theoretical predictions. We investigate experimentally whether these short spin
relaxation times are due to extrinsic factors, such as spin relaxation caused
by low impedance contacts, enhanced spin flip processes at the device edges or
the presence of an aluminium oxide layer on top of graphene in some samples.
Lateral spin valve devices using a field effect transistor geometry allowed for
the investigation of the spin relaxation as a function of the charge density,
going continuously from metallic hole to electron conduction (charge densities
of cm) via the Dirac charge neutrality point (). The results are quantitatively described by a one dimensional spin
diffusion model where the spin relaxation via the contacts is taken into
account. Spin valve experiments for various injector/detector separations and
spin precession experiments reveal that the longitudinal (T) and the
transversal (T) relaxation times are similar. The anisotropy of the spin
relaxation times and , when the spins are injected
parallel or perpendicular to the graphene plane, indicates that the effective
spin orbit fields do not lie exclusively in the two dimensional graphene plane.
Furthermore, the proportionality between the spin relaxation time and the
momentum relaxation time indicates that the spin relaxation mechanism is of the
Elliott-Yafet type. For carrier mobilities of 2-5 cm2^/Vs and
for graphene flakes of 0.1-2 m in width, we found spin relaxation times of
the order of 50-200 ps, times which appear not to be determined by the
extrinsic factors mentioned above.Comment: 11 pages, 13 figure
- …