17 research outputs found

    Cold-induced beigeing of stem cell-derived adipocytes is not fully reversible after return to normothermia

    Get PDF
    Beige adipocytes possess the morphological and biochemical characteristics of brown adipocytes, including the mitochondrial uncoupling protein (UCP)1. Mesenchymal stem cells (MSCs) are somatic multipotent progenitors which differentiate into lipid-laden adipocytes. Induction of MSC adipogenesis under hypothermic culture conditions (i.e. 32°C) promotes the appearance of a beige adipogenic phenotype, but the stability of this phenotypic switch after cells are returned to normothermic conditions of 37°C has not been fully examined. Here, cells transferred from 32°C to 37°C retained their multilocular beige-like morphology and exhibited an intermediate gene expression profile, with both beige-like and white adipocyte characteristics while maintaining UCP1 protein expression. Metabolic profile analysis indicated that the bioenergetic status of cells initially differentiated at 32°C adapted post-transfer to 37°C, showing an increase in mitochondrial respiration and glycolysis. The ability of the transferred cells to respond under stress conditions (e.g. carbonyl cyanide-4- phenylhydrazone (FCCP) treatment) demonstrated higher functional capacity of enzymes involved in the electron transport chain and capability to supply substrate to the mitochondria. Overall, MSC derived adipocytes incubated at 32°C were able to remain metabolically active and retain brown-like features after 3 weeks of acclimatisation at 37°C, indicating these phenotypic characteristics acquired in response to environmental conditions are not fully reversible

    The effect of acute heat exposure on rat pituitary corticotroph activation: the role of vasopressin.

    Get PDF
    The increased ambient temperature affects the function of hypothalamic-pituitary-adrenal (HPA) axis. Since the correlation among vasopressin (VP), adrenocorticotropic hormone (ACTH) and corticosterone (CORT) responses to various stressors have been long recognized, the aim of this study was to reveal the aforementioned hormones production and morphology of the pituitary gland after exposure to acute heat. Rats were exposed to high ambient temperature (38 °C) for 20 or 60 minutes. The circulating hormones were determined by an ELISA test or chemiluminescence's method. The results obtained show the elevation in ACTH and CORT secretion depending on the duration of heat exposure. The VP concentration increased only after prolonged exposure to heat (60 min). The pituitary morphology was examined by routine and fluorescent immunohistochemistry as well as electron microscopy. Observed changes in the anterior and posterior pituitary well corresponded to circulating hormones, regarding the volume density of ACTH-immunopositive cells, percentage of ACTH immunopositive area v. total area and number of VP-immunopositive containing varicose fibers per total area. Acute heat exposure also induced changes in shapes of ACTH-immunopositive cells. Cells appeared stellate with numerous slender cytoplasmic processes and degranulated, which is the most obvious after 20 min. In addition, immunopositivity of endothelial and anterior pituitary cells for VP suggests its influence on ACTH secretion

    Targeting glutamine synthesis inhibits stem cell adipogenesis in vitro

    Get PDF
    Background/Aims: Glutamine is the most abundant amino acid in the body and has a metabolic role as a precursor for protein, amino sugar and nucleotide synthesis. After glucose, glutamine is the main source of energy in cells and has recently been shown to be an important carbon source for de novo lipogenesis. Glutamine is synthesized by the enzyme glutamine synthetase, a mitochondrial enzyme that is active during adipocyte differentiation suggesting a regulatory role in this process. The aim of our study was therefore to investigate whether glutamine status impacts on differentiation of adipocytes and lipid droplet accumulation. Methods: Mouse mesenchymal stem cells (MSCs) were submitted to glutamine deprivation (i.e. glutamine-free adipogenic medium in conjunction with irreversible glutamine synthetase inhibitor, methionine sulfoximine – MSO) during differentiation and their response compared with MSCs differentiated in glutamine-supplemented medium (5, 10 and 20 mM). Differentiated MSCs were assessed for lipid content using Oil Red O (ORO) staining and gene expression was analysed by qPCR. Intracellular glutamine levels were determined using a colorimetric assay, while extracellular glutamine was measured using liquid chromatography-mass spectrometry (LC-MS). Results: Glutamine deprivation largely abolished adipogenic differentiation and lipid droplet formation. This was accompanied with a reduction in intracellular glutamine concentration, and downregulation of gene expression for classical adipogenic markers including PPARγ. Furthermore, glutamine restriction suppressed isocitrate dehydrogenase 1 (IDH1) gene expression, an enzyme which produces citrate for lipid synthesis. In contrast, glutamine supplementation promoted adipogenic differentiation in a dose-dependent manner. Conclusion: These results suggest that the glutamine pathway may have a previously overlooked role in adipogenesis. The underlying mechanism involved the glutamine-IDH1 pathway and could represent a potential therapeutic strategy to treat excessive lipid accumulation and thus obesity

    Caffeine exposure induces browning features in adipose tissue in vitro and in vivo

    Get PDF
    Brown adipose tissue (BAT) is able to rapidly generate heat and metabolise macronutrients, such as glucose and lipids, through activation of mitochondrial uncoupling protein 1 (UCP1). Diet can modulate UCP1 function but the capacity of individual nutrients to promote the abundance and activity of UCP1 is not well established. Caffeine consumption has been associated with loss of body weight and increased energy expenditure, but whether it can activate UCP1 is unknown. This study examined the effect of caffeine on BAT thermogenesis in vitro and in vivo. Stem cell-derived adipocytes exposed to caffeine (1mM) showed increased UCP1 protein abundance and cell metabolism with enhanced oxygen consumption and proton leak. These functional responses were associated with browning-like structural changes in mitochondrial and lipid droplet content. Caffeine also increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression and mitochondrial biogenesis, together with a number of BAT selective and beige gene markers. In vivo, drinking coffee (but not water) stimulated the temperature of the supraclavicular region, which co-locates to the main region of BAT in adult humans, and is indicative of thermogenesis. Taken together, these results demonstrate that caffeine can promote BAT function at thermoneutrality and may have the potential to be used therapeutically in adult humans

    Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging

    Get PDF
    The mechanical properties of cells play an important role in cell function and behavior. This paper presents recent developments that have enabled the use of laser-generated phonons (ultrasound) with sub-optical wavelengths to look inside living cells. The phonons reveal contrast from changes in the elasticity of the cell and can provide high resolution three dimensional images

    Leptin deficiency impairs adipogenesis and browning response in mouse mesenchymal progenitors

    No full text
    Although phenotypically different, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) are able to produce heat through non-shivering thermogenesis due to the presence of mitochondrial uncoupling protein 1 (UCP1). The appearance of thermogenically active beige adipocytes in iWAT is known as browning. Both brown and beige cells originate from mesenchymal stem cells (MSCs), and in culture conditions a browning response can be induced with hypothermia (i.e. 32 °C) during which nuclear leptin immunodetection was observed. The central role of leptin in regulating food intake and energy consumption is well recognised, but its importance in the browning process at the cellular level is unclear. Here, immunocytochemical analysis of MSC-derived adipocytes established nuclear localization of both leptin and leptin receptor suggesting an involvement of the leptin pathway in the browning response. In order to elucidate whether leptin modulates the expression of brown and beige adipocyte markers, BAT and iWAT samples from leptin-deficient (ob/ob) mice were analysed and exhibited reduced brown/beige marker expression compared to wild-type controls. When MSCs were isolated and differentiated into adipocytes, leptin deficiency was observed to induce a white phenotype, especially when incubated at 32 °C. These adaptations were accompanied with morphological signs of impaired adipogenic differentiation. Overall, our results indicate that leptin supports adipocyte browning and suggest a potential role for leptin in adipogenesis and browning

    Endocrine and Metabolic Signaling in Retroperitoneal White Adipose Tissue Remodeling during Cold Acclimation

    Get PDF
    The expression profiles of adiponectin, resistin, 5′-AMP-activated protein kinase α (AMPKα), hypoxia-inducible factor-1α (HIF-1α), and key enzymes of glucose and fatty acid metabolism and oxidative phosphorylation in rat retroperitoneal white adipose tissue (RpWAT) during 45-day cold acclimation were examined. After transient suppression on day 1, adiponectin protein level increased following sustained cold exposure. In parallel, on day 1, the protein level of HIF-1α was strongly induced and AMPKα suppressed, while afterwards the reverse was seen. What is more, after an initial decrease on day 1, a sequential increase in pyruvate dehydrogenase, acyl-CoA dehydrogenase, cytochrome c oxidase, and ATP synthase and a decrease in acetyl-CoA carboxylase (from day 3) were observed. Similar to adiponectin, protein level of resistin showed a biphasic profile: it increased after days 1, 3, and 7 and decreased below the control after 21 days of cold-acclimation. In summary, the data suggest that adiponectin and resistin are important integrators of RpWAT metabolic response and roles it plays during cold acclimation. It seems that AMPKα mediate adiponectin effects on metabolic remodeling RpWAT during cold acclimation

    Involvement of Ferroptosis in Diabetes-Induced Liver Pathology

    No full text
    Cell death plays an important role in diabetes-induced liver dysfunction. Ferroptosis is a newly defined regulated cell death caused by iron-dependent lipid peroxidation. Our previous studies have shown that high glucose and streptozotocin (STZ) cause β-cell death through ferroptosis and that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, improves β-cell viability, islet morphology, and function. This study was aimed to examine in vivo the involvement of ferroptosis in diabetes-related pathological changes in the liver. For this purpose, male C57BL/6 mice, in which diabetes was induced with STZ (40 mg/kg/5 consecutive days), were treated with Fer-1 (1 mg/kg, from day 1–21 day). It was found that in diabetic mice Fer-1 improved serum levels of ALT and triglycerides and decreased liver fibrosis, hepatocytes size, and binucleation. This improvement was due to the Fer-1-induced attenuation of ferroptotic events in the liver of diabetic mice, such as accumulation of pro-oxidative parameters (iron, lipofuscin, 4-HNE), decrease in expression level/activity of antioxidative defense-related molecules (GPX4, Nrf2, xCT, GSH, GCL, HO-1, SOD), and HMGB1 translocation from nucleus into cytosol. We concluded that ferroptosis contributes to diabetes-related pathological changes in the liver and that the targeting of ferroptosis represents a promising approach in the management of diabetes-induced liver injury

    The origin of lipofuscin in brown adipocytes of hyperinsulinaemic rats: the role of lipid peroxidation and iron

    No full text
    The aim of this study was to investigate lipofuscin origin in brown adipocytes of hyperinsulinaemic rats and the possible role of lipid peroxidation and iron in this process. Ultrastructural examination revealed hyperinsulinaemia-induced enhancement in the lipofuscin production, accompanied by an increase of mitochondrial damage in brown adipocytes. Extensive fusions of lipid droplets and mitochondria with lysosomes were also observed. Confocal microscopy showed lipofuscin autofluorescence emission in brown adipose tissue (BAT) after excitation at 488 nm and 633 nm, particularly in the insulin-treated groups. The presence and distribution of lipid peroxidation product, 4-hydroxy-2-nonenal (4- HNE), in brown adipocytes was assessed by immunohistochemical examination revealing its higher content after treatment with insulin. The iron content was quantified by electron dispersive X-ray analysis (EDX) showing its higher content in the hyperinsulinaemic groups. The ultrastucture of the majority of lipofuscin granules suggests their mitochondrial origin, which was additionally confirmed by their colocalization with ATP synthase. In conclusion, our results suggest that increased lipofuscinogenesis in the brown adipocytes of hyperinsulinaemic rats is a consequence of lipid peroxidation, mitochondrial damage and iron accumulation

    Long-term dietary L-arginine supplementation increases endothelial nitric oxide synthase and vasoactive intestinal peptide immunoexpression in rat small intestine

    No full text
    Nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) are important intestinal neurotransmitters that coexist in the gut enteric nervous system and play an important role in intestinal physiology (e.g., absorption, motility, fluid secretion and smooth muscle relaxation). It is also known that cold exposure alters several aspects of gastrointestinal physiology and induces hyperphagia to meet increased metabolic demands, but there are no data regarding NO and VIP involvement in intestinal response during acclimation to cold. The objective of this study was to determine the influence of long-term l-arginine supplementation on the expression of the three isoforms of nitric oxide synthase (NOS) and VIP in small intestine of rats acclimated to room temperature or cold. Animals (six per group) acclimated to room temperature (22 +/- A 1 A degrees C) and cold (4 +/- A 1 A degrees C), respectively, were treated with 2.25 \% l-arginine, a substrate for NOSs, or with 0.01 \% N (omega)-nitro-l-arginine methyl ester, an inhibitor of NOSs, for 45 days. The topographical distribution of VIP and NOSs expression in small intestine was studied by immunohistochemistry, and ImageJ software was used for semiquantitative densitometric analysis of their immunoexpression. Long-term dietary l-arginine supplementation increases VIP and NOSs immunoexpression at room temperature while at cold increases the endothelial NOS, inducible NOS and VIP but decrease neuronal NOS in rat small intestine. Our results demonstrate that long-term dietary l-arginine supplementation modulates NOSs and VIP immunoexpression in rat small intestine with respect to ambient temperature, pointing out the eNOS as a predominant NOS isoform with an immunoexpression pattern similar to VIP.Serbian Ministry of Education, Science and Technological Development {[}173055
    corecore