3 research outputs found
The genome of a songbird
The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chickenthe only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat- based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour. © 2010 Macmillan Publishers Limited. All rights reserved
Cloning and expression analysis of retinoic acid receptors in the zebra finch brain
The vitamin A derivative retinoic acid is produced postembryonically in discrete portions of the songbird brain, including some of the nuclei involved in song production and song learning, and its synthesis is required for the normal maturation of song behavior. To identify the brain targets for retinoic acid action, we cloned the zebra finch homologs of the α, β, and γ classes of retinoic acid receptors (RARs), In situ hybridization analysis revealed that the mRNAs for all three RARs are expressed at different levels in several brain areas, with a broader distribution than the mRNA for retinaldehyde-specific aldehyde dehydrogenase (zRalDH), a retinoic acid-synthesizing enzyme. Detectable RAR expression was found in all nuclei of the song control system, with the most marked expression occurring within the striatal song nucleus area X. These observations are consistent with a persistent action of retinoic acid in the postembryonic and adult songbird brain and provide further evidence for an involvement of retinoic acid signaling in the control of learned vocal behavior in a songbird species. They also suggest that the striatum is a major target of retinoic acid in songbirds. © 2005 Wiley-Liss, Inc
GABAergic neurons participate in the brain\u27s response to birdsong auditory stimulation
Birdsong is a learned vocal behaviour that requires intact hearing for its development in juveniles and for its maintenance during adulthood. However, the functional organization of the brain circuits involved in the perceptual processing of song has remained obscure. Here we provide evidence that GABAergic mechanisms are an important component of these circuits and participate in the auditory processing of birdsong. We first cloned a zebra finch homologue of the gene encoding the 65-kDa isoform of glutamic acid decarboxylase (zGAD-65), a specific GABAergic marker, and conducted an expression analysis by In situ hybridization to identify GABAergic cells and to map their distribution throughout auditory telencephalic areas. The results showed that field L2, the caudomedial nidopallium (NCM) and the caudomedial mesopallium (CMM) contain a high number of GABAergic cells. Using patch-clamp brain slice recordings, we found abundant GABAergic mIPSCs in NCM. Pharmacological antagonism of mIPSCs induced large EPSC bursts, suggesting that tonic inhibition helps to stabilize NCM against runaway excitation via activation of GABA-A receptors. Next, using double fluorescence in situ hybridization and double immunocytochemical labelling, we demonstrated that large numbers of GABAergic cells in NCM and CMM show inducible expression of the transcriptional regulator ZENK in response to song auditory stimulation. These data provide direct evidence that GABAergic neurons in auditory brain regions are activated by song stimulation. Altogether, our results suggest that GABAergic mechanisms participate in auditory processing and perception, and might contribute to the memorization of birdsong