55 research outputs found

    Quantum error correction in crossbar architectures

    No full text
    A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so-called crossbar architectures. Recently we made a proposal for a large-scale quantum processor (Li et al arXiv:1711.03807 (2017)) to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single-qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large-scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.Accepted Author ManuscriptQuantum Information and SoftwareQuTechQID/Wehner GroupQCD/Veldhorst LabQuantum Internet Divisio

    Rent's rule and extensibility in quantum computing

    No full text
    Quantum computing is on the verge of a transition from fundamental research to practical applications. Yet, to make the step to large-scale quantum computation, an extensible qubit system has to be developed. In classical semiconductor technology, this was made possible by the invention of the integrated circuit, which allowed to interconnect large numbers of components without having to solder to each and every one of them. Similarly, we expect that the scaling of interconnections and control lines with the number of qubits will be a central bottleneck in creating large-scale quantum technology. Here, we define the quantum Rent exponent p to quantify the progress in overcoming this challenge at different levels throughout the quantum computing stack. We further discuss the concept of quantum extensibility as an indicator of a platform's potential to reach the large quantum volume needed for universal quantum computing and review extensibility limits faced by different qubit implementations on the way towards truly large-scale qubit systems.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.QCD/Veldhorst LabQuTechQCD/Vandersypen LabQN/Vandersypen La

    Electron g -factor of valley states in realistic silicon quantum dots

    No full text
    We theoretically model the spin-orbit interaction in silicon quantum dot devices, relevant for quantum computation and spintronics. Our model is based on a modified effective mass approach which properly accounts for spin-valley boundary conditions, derived from the interface symmetry, and should have applicability for other heterostructures. We show how the valley-dependent interface-induced spin-orbit 2D (3D) interaction, under the presence of an electric field that is perpendicular to the interface, leads to a g-factor renormalization in the two lowest valley states of a silicon quantum dot. These g-factors can change with electric field in opposite direction when intervalley spin-flip tunneling is favored over intravalley processes, explaining recent experimental results. We show that the quantum dot level structure makes only negligible higher order effects to the g-factor. We calculate the g-factor as a function of the magnetic field direction, which is sensitive to the interface symmetry. We identify spin-qubit dephasing sweet spots at certain directions of the magnetic field, where the g-factor renormalization is zeroed: these include perpendicular to the interface magnetic field, and also in-plane directions, the latter being defined by the interface-induced spin-orbit constants. The g-factor dependence on electric field opens the possibility for fast all-electric manipulation of an encoded, few electron spin qubit, without the need of a nanomagnet or a nuclear spin-background. Our approach of an almost fully analytic theory allows for a deeper physical understanding of the importance of spin-orbit coupling to silicon spin qubits.QCD/Veldhorst La

    Silicon CMOS architecture for a spin-based quantum computer

    No full text
    Recent advances in quantum error correction codes for fault-Tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.QCD/Veldhorst LabQuTec

    Electrically driven spin qubit based on valley mixing

    No full text
    The electrical control of single spin qubits based on semiconductor quantum dots is of great interest for scalable quantum computing since electric fields provide an alternative mechanism for qubit control compared with magnetic fields and can also be easier to produce. Here we outline the mechanism for a drastic enhancement in the electrically-driven spin rotation frequency for silicon quantum dot qubits in the presence of a step at a heterointerface. The enhancement is due to the strong coupling between the ground and excited states which occurs when the electron wave function overcomes the potential barrier induced by the interface step. We theoretically calculate single qubit gate times tπ of 170 ns for a quantum dot confined at a silicon/silicon-dioxide interface. The engineering of such steps could be used to achieve fast electrical rotation and entanglement of spin qubits despite the weak spin-orbit coupling in silicon.QCD/Veldhorst La

    A Si/SiGe based quantum dot with floating gates for scalability

    No full text
    Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.QCD/Vandersypen LabQN/Veldhorst LabQID/Ishihara LabQuantum Circuit Architectures and TechnologyQuTechQN/Vandersypen La

    A single-hole spin qubit

    No full text
    Qubits based on quantum dots have excellent prospects for scalable quantum technology due to their compatibility with standard semiconductor manufacturing. While early research focused on the simpler electron system, recent demonstrations using multi-hole quantum dots illustrated the favourable properties holes can offer for fast and scalable quantum control. Here, we establish a single-hole spin qubit in germanium and demonstrate the integration of single-shot readout and quantum control. We deplete a planar germanium double quantum dot to the last hole, confirmed by radio-frequency reflectrometry charge sensing. To demonstrate the integration of single-shot readout and qubit operation, we show Rabi driving on both qubits. We find remarkable electric control over the qubit resonance frequencies, providing great qubit addressability. Finally, we analyse the spin relaxation time, which we find to exceed one millisecond, setting the benchmark for hole quantum dot qubits. The ability to coherently manipulate a single hole spin underpins the quality of strained germanium and defines an excellent starting point for the construction of quantum hardware.QCD/Veldhorst LabBusiness DevelopmentQCD/Scappucci La

    Impact of valley phase and splitting on readout of silicon spin qubits

    No full text
    We investigate the effect of the valley degree of freedom on Pauli-spin blockade readout of spin qubits in silicon. The valley splitting energy sets the singlet-triplet splitting and thereby constrains the detuning range. The valley phase difference controls the relative strength of the intra- and intervalley tunnel couplings, which, in the proposed Pauli-spin blockade readout scheme, couple singlets and polarized triplets, respectively. We find that high conversion fidelity is possible for a wide range of phase differences, while taking into account experimentally observed valley splittings and tunnel couplings. We also show that the control of the valley splitting together with the optimization of the readout detuning can compensate the effect of the valley phase difference. To increase the measurement fidelity and extend the relaxation time we propose a latching protocol that requires a triple quantum dot and exploits weak long-range tunnel coupling. These opportunities are promising for scaling spin qubit systems and improving qubit readout fidelity.QCD/Veldhorst LabQuTec

    Single-hole pump in germanium

    No full text
    Single-charge pumps are the main candidates for quantum-based standards of the unit ampere because they can generate accurate and quantized electric currents. In order to approach the metrological requirements in terms of both accuracy and speed of operation, in the past decade there has been a focus on semiconductor-based devices. The use of a variety of semiconductor materials enables the universality of charge pump devices to be tested, a highly desirable demonstration for metrology, with GaAs and Si pumps at the forefront of these tests. Here, we show that pumping can be achieved in a yet unexplored semiconductor, i.e. germanium. We realise a single-hole pump with a tunable-barrier quantum dot electrostatically defined at a Ge/SiGe heterostructure interface. We observe quantized current plateaux by driving the system with a single sinusoidal drive up to a frequency of 100 MHz. The operation of the prototype was affected by accidental formation of multiple dots, probably due to disorder potential, and random charge fluctuations. We suggest straightforward refinements of the fabrication process to improve pump characteristics in future experiments 2021 The Author(s). Published by IOP Publishing Ltd.QCD/Veldhorst LabQuTechBUS/TNO STAFFQN/Veldhorst LabQCD/Scappucci La

    Lightly strained germanium quantum wells with hole mobility exceeding one million

    No full text
    We demonstrate that a lightly strained germanium channel (ϵ / / = - 0.41 %) in an undoped Ge/Si0.1Ge0.9 heterostructure field effect transistor supports a two-dimensional (2D) hole gas with mobility in excess of 1 × 10 6 cm2/Vs and percolation density less than 5 × 10 10 cm-2. This low disorder 2D hole system shows tunable fractional quantum Hall effects at low densities and low magnetic fields. The low-disorder and small effective mass (0.068 m e) defines lightly strained germanium as a basis to tune the strength of the spin-orbit coupling for fast and coherent quantum hardware. QCD/Scappucci LabQuTechBUS/TNO STAFFQN/Veldhorst La
    • …
    corecore