18 research outputs found

    A significant proportion of classic Hodgkin lymphoma recurrences represents clonally unrelated second primary lymphoma

    Get PDF
    Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is under-investigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (IG) and T-cell receptor (TR) rearrangements was performed in paired cHL diagnosis and recurrences of 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal IG rearrangements were detected by next-generation sequencing (NGS) in 69/120 (58%) diagnosis and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24/34 patients (71%). Clonally unrelated cHL was observed in 10/34 patients (29%) as determined by IG-NGS clonality assessment, and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of &gt;2 years, ~60% of cHL patients for which the clonal relationship could be established showed a second primary cHL. Clonal TR gene rearrangements were identified in 14/125 samples (11%), and TCL-associated gene mutations were detected in 7/14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged &gt;50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based IG/TR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.</p

    Ixazomib, daratumumab and low-dose dexamethasone in intermediate-fit patients with newly diagnosed multiple myeloma:an open-label phase 2 trial

    Get PDF
    Background: The outcome of non-transplant eligible newly diagnosed multiple myeloma (NDMM) patients is heterogeneous, partly depending on frailty level. The aim of this study was to prospectively investigate the efficacy and safety of Ixazomib-Daratumumab-low-dose dexamethasone (Ixa-Dara-dex) in NDMM intermediate-fit patients. Methods: In this phase II multicenter HOVON-143 study, IMWG Frailty index based intermediate-fit patients, were treated with 9 induction cycles of Ixa-Dara-dex, followed by maintenance with ID for a maximum of 2 years. The primary endpoint was overall response rate on induction treatment. Patients were included from October 2017 until May 2019. Trial Registration Number: NTR6297. Findings: Sixty-five patients were included. Induction therapy resulted in an overall response rate of 71%. Early mortality was 1.5%. At a median follow-up of 41.0 months, median progression-free survival (PFS) was 18.2 months and 3-year overall survival 83%. Discontinuation of therapy occurred in 77% of patients, 49% due to progression, 9% due to toxicity, 8% due to incompliance, 3% due to sudden death and 8% due to other reasons. Dose modifications of ixazomib were required frequently (37% and 53% of patients during induction and maintenance, respectively), mainly due to, often low grade, polyneuropathy. During maintenance 23% of patients received daratumumab alone. Global quality of life (QoL) improved significantly and was clinically relevant, which persisted during maintenance treatment. Interpretation: Ixazomib-Daratumumab-low-dose dexamethasone as first line treatment in intermediate-fit NDMM patients is safe and improves global QoL. However, efficacy was limited, partly explained by ixazomib-induced toxicity, hampering long term tolerability of this 3-drug regimen. This highlights the need for more efficacious and tolerable regimens improving the outcome in vulnerable intermediate-fit patients. Funding: Janssen Pharmaceuticals, Takeda Pharmaceutical Company Limited.</p

    A significant proportion of classic Hodgkin lymphoma recurrences represents clonally unrelated second primary lymphoma

    Get PDF
    Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is under-investigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (IG) and T-cell receptor (TR) rearrangements was performed in paired cHL diagnosis and recurrences of 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal IG rearrangements were detected by next-generation sequencing (NGS) in 69/120 (58%) diagnosis and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24/34 patients (71%). Clonally unrelated cHL was observed in 10/34 patients (29%) as determined by IG-NGS clonality assessment, and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of &gt;2 years, ~60% of cHL patients for which the clonal relationship could be established showed a second primary cHL. Clonal TR gene rearrangements were identified in 14/125 samples (11%), and TCL-associated gene mutations were detected in 7/14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged &gt;50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based IG/TR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.</p

    Hematopoietic stem and progenitor cells are differentially mobilized depending on the duration of Flt3-ligand administration

    No full text
    Background Flt3-ligand is a cytokine that induces relatively slow mobilization of hematopoietic cells in animals and humans in vivo. This provides a time-frame to study hematopoietic stem and progenitor cell migration kinetics in detail. Design and Methods Mice were injected with Flt3-ligand (10 mu g/day, intraperitoneally) for 3, 5, 7 and 10 days. Mobilization of hematopoietic stem and progenitor cells was studied using colony-forming-unit granulocyte/monocyte and cobblestone-area-forming-cell assays. The radioprotective capacity of mobilized peripheral blood mononuclear cells was studied by transplantation of 1.5x10(6) Flt3-ligand-mobilized peripheral blood mononuclear cells into lethally irradiated (9.5 Gy) recipients. Results Hematopoietic progenitor cell mobilization was detected from day 3 onwards and prolonged administration of Flt3-ligand produced a steady increase in mobilized progenitor cells. Compared to Flt3-ligand administration for 5 days, the administration of Flt3-ligand for 10 days led to a 5.5-fold increase in cobblestone-area-forming cells at week 4 and a 5.0-fold increase at week 5. Furthermore, transplantation of peripheral blood mononuclear cells mobilized by 5 days of Flt3-ligand administration did not radioprotect lethally irradiated recipients, whereas peripheral blood mononuclear cells mobilized by 10 days of Flt3-Ligand administration did provide 100% radioprotection of the recipients with significant multilineage donor chimerism. Compared to the administration of Flt3-ligand or interleukin-8 alone, co-administration of interleukin-8 and Flt3-ligand led to synergistic enhancement of hematopoietic stem and progenitor cell mobilization on days 3 and 5. Conclusions These results indicate that hematopoietic stem and progenitor cells show different mobilization kinetics in response to Flt3-ligand, resulting in preferential mobilization of hematopoietic progenitor cells at day 5, followed by hematopoietic stem cell mobilization at day 10.Stemcel biology/Regenerative medicine (incl. bloodtransfusion

    First-Line Treatment of Waldenström’s Macroglobulinaemia: Considerations Based on the Dutch National Guideline

    No full text
    Waldenström macroglobulinemia (WM) is a rare B-cell Non-Hodgkin Lymphoma. There are only few prospective randomized clinical trials to guide treatment recommendations and there is no international consensus on a preferred first line treatment approach. In the recently revised Dutch guideline for WM, we describe recommendations for practice based as much as possible on the known data. Here, we summarize the considerations for first-line treatment based on these Dutch guidelines. Available evidence is summarized, including efficacy and toxicity data. Combinations of Rituximab with chemotherapy, proteasome inhibition or BTK-inhibition are all valid first line treatment options. The Dutch WM working group considers Dexamethasone/Rituximab/Cylofosfamide (DRC) a suitable first-line treatment for many WM patients, given the efficacy, the relatively mild toxicity profile and the extensive experience with this regimen. However, the long-term toxicities of DRC are unclear and need further clarification. Other regimens such as R-bendamustine, R-Bortezomib-dexamethason are also effective options, however with specific toxicities. BTK-inhibitors are not a preferred option in first line for most patients in the Dutch WM guidelines because of the need for longterm treatment and toxicities. Based on patient preferences research, future clinical trials should focus on effective fixed-duration regimens with non-cytotoxic therapies that have a favorable toxicity profile. Further development of (combinations with) BCL-2 inhibititors, novel proteasome inhibitors and BTK-inhibition could be interesting. In addition T-cell-directed treatments including bispecific antibodies as a monotherapy or combined with other novel agents deserve further study in WM

    First-Line Treatment of Waldenstr&ouml;m&rsquo;s Macroglobulinaemia: Considerations Based on the Dutch National Guideline

    No full text
    Waldenstr&ouml;m macroglobulinemia (WM) is a rare B-cell Non-Hodgkin Lymphoma. There are only few prospective randomized clinical trials to guide treatment recommendations and there is no international consensus on a preferred first line treatment approach. In the recently revised Dutch guideline for WM, we describe recommendations for practice based as much as possible on the known data. Here, we summarize the considerations for first-line treatment based on these Dutch guidelines. Available evidence is summarized, including efficacy and toxicity data. Combinations of Rituximab with chemotherapy, proteasome inhibition or BTK-inhibition are all valid first line treatment options. The Dutch WM working group considers Dexamethasone/Rituximab/Cylofosfamide (DRC) a suitable first-line treatment for many WM patients, given the efficacy, the relatively mild toxicity profile and the extensive experience with this regimen. However, the long-term toxicities of DRC are unclear and need further clarification. Other regimens such as R-bendamustine, R-Bortezomib-dexamethason are also effective options, however with specific toxicities. BTK-inhibitors are not a preferred option in first line for most patients in the Dutch WM guidelines because of the need for longterm treatment and toxicities. Based on patient preferences research, future clinical trials should focus on effective fixed-duration regimens with non-cytotoxic therapies that have a favorable toxicity profile. Further development of (combinations with) BCL-2 inhibititors, novel proteasome inhibitors and BTK-inhibition could be interesting. In addition T-cell-directed treatments including bispecific antibodies as a monotherapy or combined with other novel agents deserve further study in WM
    corecore