55 research outputs found

    Quantum interference of high-order harmonics from mixed gases

    Get PDF
    We present a theoretical study about the interference of the harmonics generated by a mixture of two gases, He-Ne. Our model is based on the electron quantum paths, a discrete number of electron trajectories, and continuum-bound transitions. A laser with intensity around 1014W/cm2 that interacts with a mixture of gases, He-Ne, produces an interference that is destructive at the low-order harmonics and oscillates between constructive and destructive near to cutoff. This destructive interference at high-order harmonics may be used to explore other transitions, which are currently hidden. At low-order harmonic frequencies, our numerical results are in very good agreement with experimental data. At higher-order harmonics, where there are no experimental data, comparison is with a Schrödinger solver

    Differences into HT and HTO concentrations in air into the Western Mediterranean Basin and Continental Europe and Safety Related Issues.

    Get PDF
    Real time Tritium concentrations in air in two chemical forms, HT and HTO, coming from an ITER-like fusion reactor as source were coupled the European Centre Medium Range Weather Forecast (ECMWF) numerical model with the Lagrangian Atmospheric-particle dispersion model FLEXPART. This tool was analyzed in nominal tritium discharge operational reference and selected incidental conditions affecting the Western Mediterranean Basin during 45 days during summer 2010 together with surface “wind observations” or weather data based in real hourly observations of wind direction and velocity providing a real approximation of the tritium behavior after the release to the atmosphere from a fusion reactor. From comparison with NORMTRI - a code using climatologically sequences as input - over the same area, the real time results have demonstrated an apparent overestimation of the corresponding climatologically sequence of Tritium concentrations in air outputs, at several distances from the reactor. For this purpose two development patterns were established. The first one was following a cyclonic circulation over the Mediterranean Sea and the second one was based on the plume delivered over the Interior of the Iberian Peninsula and Continental Europe by another stabilized circulation corresponding to a High Pressure System. One of the important remaining activities defined then, was the qualification tool. In order to validate the model of ECMWF/FLEXPART we have developed of a new complete data base of tritium concentrations for the months from November 2010 to March 2011 and defined a new set of four patterns of HT transport in air, in each case using real boundary conditions: stationary to the North, stationary to the South, fast and very fast displacement. Finally the differences corresponding to those four early patterns (each one in assessments 1 and 2) has been analyzed in terms of the tuning of safety related issues and taking into account the primary phase o- - f tritium modeling, from its discharge to the atmosphere to the deposition on the ground, will affect to the complete tritium environmental pathway altering the chronic dose by absorption, reemission and ingestion both from elemental tritium, HT and from the oxide of tritium, HT

    Producing ultrashort, ultraintense plasma-based soft-x-ray laser pulses by high-harmonic seeding.

    Get PDF
    Simulations show that intense plasma-amplified pulses of 100 fs duration and below are feasible by seeding specifically tailored plasma with an ultrashort pulse of high harmonic radiation. Seeding overcomes gain narrowing by driving amplifying media into saturation earlier, and compensates for reduced gain resulting from boosting the lasing transition linewidth. We conclude that ultrahigh intensities (above 1016 W cm-2) could be reached

    Comparison of Acceleration Methods in a Radiation Transport Code With Adaptive Mesh Refinement

    Get PDF
    New considerations about the acceleration of an iterative process to couple the radiation transport equation and the equation of matter temperature are presented in this paper. Two synthetic acceleration methods [diffusion synthetic acceleration (DSA) and transport synthetic acceleration (TSA)] have been studied and analyzed, showing its strengths and weaknesses. This study is applied to an adaptive mesh refinement (AMR) context, concluding in a better performance of DSA for coarse level resolutions with higher Sn, while TSA is better for finer level boxes and smaller Sn cases. These conclusions are applied to accelerate the resolution of an AMR problem

    Environmental impact assessment of tritium release over the Western

    Get PDF
    The environmental impact of systems managing large (kg) tritium amount represents a public scrutiny issue for the next coming fusion facilities as DEMO. Furthermore, potentially new dose limits imposed by international regulations (ICRP) shall impact next coming devices designs and the overall costs of fusion technology deployment. Refined environmental tritium dose impact assessment schemes are then overwhelming. Detailed assessments can be procured from the knowledge of the real boundary conditions of the primary tritium discharge phase into atmosphere and into soils. Lagrangian dispersion models using real-time meteorological and topographic data provide strong refinement. Advance simulation tools are being developed in this sense. The tool integrates modeled numerical records from European Centre for Medium range Weather Forecast (ECMWF) with a lagrangian atmospheric dispersion model (FLEXPART). The model results can be coupled with tritium dose secondary phase pathway assessment tools. Nominal tritium discharge operational reference and selected incidental ITER-like plant systems tritium form source terms have been assumed. The real-time daily data and mesh-refined records together with lagrangian dispersion model approach provide accurate results for doses to population by inhalation or ingestion in the secondary phase

    Bloche-Maxwell treatment of amplification of high harmonic seed in soft x-ray laser amplifiers in both direct and chirped amplifications

    Get PDF
    Seeding plasma-based softx-raylaser (SXRL) demonstrated diffraction-limited, fully coherent in space and in time beam but with energy not exceeding 1 μJ per pulse. Quasi-steady-state (QSS) plasmas demonstrated to be able to store high amount of energy and then amplify incoherent SXRL up to several mJ. Using 1D time-dependant Bloch–Maxwell model including amplification of noise, we demonstrated that femtosecond HHG cannot be efficiently amplified in QSS plasmas. However, using Chirped Pulse Amplification concept on HHG seed allows to extract most of the stored energy, reaching up to 5 mJ in fully coherent pulses that can be compressed down to 130 fs

    Consequences of different meteorological scenarios in the environmental impact assessment of tritium in air

    Get PDF
    The environmental impact of systems managing large (kg) tritium amount represents a public scrutiny issue for the next coming fusion facilities as ITER and DEMO. Furthermore, potentially new dose limits imposed by international regulations (ICRP) shall impact next coming devices designs and the overall costs of fusion technology deployment. Refined environmental tritium dose impact assessment schemes are then overwhelming. Detailed assessments can be procured from the knowledge of the real boundary conditions of the primary tritium discharge phase into atmosphere (low levels) and into soils. Lagrangian dispersion models using real-time meteorological and topographic data provide a strong refinement. Advance simulation tools are being developed in this sense. The tool integrates a numerical model output records from European Centre for Medium range Weather Forecast (ECMWF) with a lagrangian atmospheric dispersion model (FLEXPART). The composite model ECMWF/FLEXTRA results can be coupled with tritium dose secondary phase pathway assessment tools. Nominal tritium discharge operational reference and selected incidental ITER-like plant systems tritium form source terms have been assumed. The realtime daily data and mesh-refined records together with lagrangian dispersion model approach provide accurate results for doses to population by inhalation or ingestion in the secondary phas

    Equation of State for laboratory astrophysics applications

    Get PDF
    New improvements on the calculation of Equation of State (EOS) for laboratory astrophysics applications are presented. A new empirical multiplier for the EOS is included to the original quotidian equation of state (QEOS) model developed by More et al. (Phys. Fluids 31:3059, 1988) to adapt it to the available experimental data and ab initio molecular dynamics simulation. This model is used to obtain EOS tables suited for an adaptive mesh refinement hydrodynamic code with radiation transport for high energy density plasmas simulations called ARWEN introduced by Ogando and Velarde (J. Quant. Spectrosc. Radiat. Transf. 71(2–6):541, 2001)

    Consequences of different meteorological scenarios in the environmental impact assesment of tritium release

    Get PDF
    The environmental impact of systems managing large (kg) tritium amount represents a public scrutiny issue for the next coming fusion facilities as ITER and DEMO. Furthermore, potentially new dose limits imposed by international regulations (ICRP) shall impact next coming devices designs and the overall costs of fusion technology deployment. Refined environmental tritium dose impact assessment schemes are then overwhelming. Detailed assessments can be procured from the knowledge of the real boundary conditions of the primary tritium discharge phase into atmosphere (low levels) and into soils. Lagrangian dispersion models using real-time meteorological and topographic data provide an strong refinement. Advance simulation tools are being developed in this sense. The tool integrates a numerical model output records from European Centre for Medium range Weather Forecast (ECMWF) with a lagrangian atmospheric dispersion model (FLEXPART). The composite model ECMWF/FLEXTRA results can be coupled with tritium dose secondary phase pathway assessment tools. Nominal tritium discharge operational reference and selected incidental ITER-like plant systems tritium form source terms have been assumed. The realtime daily data and mesh-refined records together with lagrangian dispersion model approach provide accurate results for doses to population by inhalation or ingestion in the secondary phase

    Validation of real time dispersion of Tritium clouds over the Western Mediterranean Basin in different assesments

    Full text link
    Real time Tritium concentrations in air coming from an ITER-like reactor as source were coupled the European Centre Medium Range Weather Forecast (ECMWF) numerical model with the lagrangian atmospheric dispersion model FLEXPART. This tool ECMWF/FLEXPART was analyzed in normal operating conditions in the Western Mediterranean Basin during 45 days at summer 2010. From comparison with NORMTRI plumes over Western Mediterranean Basin the real time results have demonstrated an overestimation of the corresponding climatologically sequence Tritium concentrations in air outputs, at several distances from the reactor. For these purpose two clouds development patterns were established. The first one was following a cyclonic circulation over the Mediterranean Sea and the second one was based in the cloud delivered over the Interior of the Iberian Peninsula by another stabilized circulation corresponding to a High. One of the important remaining activities defined then, was the tool qualification. The aim of this paper is to present the ECMWF/FLEXPART products confronted with Tritium concentration in air data. For this purpose a database to develop and validate ECMWF/FLEXPART tritium in both assessments has been selected from a NORMTRI run. Similarities and differences, underestimation and overestimation with NORMTRI will allowfor refinement in some features of ECMWF/FLEXPAR
    corecore