9 research outputs found

    Measurement and Reproducibility of Preserved Ellipsoid Zone Area and Preserved Retinal Pigment Epithelium Area in Eyes With Choroideremia

    Get PDF
    PURPOSE: To identify valid and reproducible methods for quantifying anatomic outcome measures for eyes with choroideremia (CHM) in clinical trials. DESIGN: Reliability analysis study. METHODS: In this multicenter study, patients with confirmed genetic diagnosis of CHM were enrolled. All cases underwent spectral-domain optical coherence tomography (SDOCT) and fundus autofluorescence (FAF) imaging. Two graders independently delineated boundaries of preserved autofluorescence (PAF) and pre-served ellipsoid zone (EZ) on FAF and OCT images, respectively. The results of the 2 independent gradings of both FAF and OCT images were compared to assess the reproducibility of the grading methods. RESULTS: A total of 148 eyes from 75 cases were included. In 21% of eyes PAF and in 43% of eyes preserved EZ had extended beyond the image capture area. After exclusion of these eyes and low-quality images, 114 FAF and 77 OCT images were graded. The mean PAF areas from 2 independent gradings were 3.720 +/- 3.340 mm(2) and 3.692 +/- 3.253 mm2, respectively. Intraclass correlation coefficient (ICC) for these gradings was 0.996. The mean preserved EZ areas from 2 independent gradings were 2.746 +/- 2.319 mm2 and 2.858 2.446 mm2, respectively. ICC for these gradings was 0.991. CONCLUSIONS: Quantifying preserved retinal pigment epithelium and EZ areas on FAF and OCT images, respectively, in CHM patients is highly reproducible. These variables would be potential anatomic outcome measures for CHM clinical trials and could be studied and tracked longitudinally in choroideremia. (C) 2017 Elsevier Inc. All rights reserved.Peer reviewe

    Correlation between retinal sensitivity and cystoid space characteristics in diabetic macular edema

    No full text
    Purpose: To evaluate the correlation between retinal sensitivity and cystoid space characteristics in eyes with diabetic macular edema (DME). Materials and Methods: Prospective cross-sectional study of 22 subjects with DME (32 treatment-naïve eyes). All study subjects underwent complete ophthalmic examination, including slit-lamp biomicroscopy and dilated fundus examination. All subjects underwent spectral domain optical coherence tomography (SD-OCT) and microperimetry (MP). Intraretinal cystoid space (ICS) volume was generated after manual delineation of cystoid space boundaries using the three-dimensional-OCT software. Various SD-OCT parameters, including retinal thickness, retinal volume, cystoid space volume, cystoid space intensity, and outer retinal structure integrity, were correlated with MP parameters and best-corrected visual acuity (BCVA). Results: Subject′s mean age was 57 ± 9 years. The mean logarithm of minimum angle of resolution BCVA was 0.4 ± 0.2. The intraclass correlation coefficient for inter- and intra-grader assessment of cystoid space volume by manual delineation was 0.99 and 0.99, respectively. Mean total ICS volume was 0.4 ± 0.4 mm 3 and for the foveal center, subfield was 0.1 ± 0.1 mm 3 . Mean retinal sensitivity was 12.89 ± 10 dB; however, foveal retinal sensitivity was 12.3 ± 11.1 dB. We found no significant correlation between BCVA and total cystoid space volume (r = 0.33, P = 0.06). Correlation between total retinal sensitivity and total ICS was negative and nonsignificant (r = −0.17, P = 0.36). Correlation between foveal retinal sensitivity and foveal cystoid space intensity was moderate and marginally significant (r = −0.43, P = 0.05). Conclusion: Total cystoid space volume was not significantly correlated with BCVA or total retinal sensitivity in subjects with DME. Foveal cystoid space optical intensity was negatively correlated with foveal retinal sensitivity. These findings suggest further investigation of cystoid space characteristics in the setting of DME may be of value

    ASSOCIATION OF DRUSEN VOLUME WITH CHOROIDAL PARAMETERS IN NONNEOVASCULAR AGE-RELATED MACULAR DEGENERATION

    No full text
    The choroid is thought to be relevant to the pathogenesis of nonneovascular age-related macular degeneration, but its role has not yet been fully defined. In this study, we evaluate the relationship between the extent of macular drusen and specific choroidal parameters, including thickness and intensity. Spectral domain optical coherence tomography images were collected from two distinct, independent cohorts with nonneovascular age-related macular degeneration: Amish (53 eyes of 34 subjects) and non-Amish (40 eyes from 26 subjects). All spectral domain optical coherence tomography scans were obtained using the Cirrus HD-OCT with a 512 × 128 macular cube (6 × 6 mm) protocol. The Cirrus advanced retinal pigment epithelium analysis tool was used to automatically compute drusen volume within 3 mm (DV3) and 5 mm (DV5) circles centered on the fovea. The inner and outer borders of the choroid were manually segmented, and the mean choroidal thickness and choroidal intensity (i.e., brightness) were calculated. The choroidal intensity was normalized against the vitreous and nerve fiber layer reflectivity. The correlation between DV and these choroidal parameters was assessed using Pearson and linear regression analysis. A significant positive correlation was observed between normalized choroidal intensity and DV5 in the Amish (r = 0.42, P = 0.002) and non-Amish (r = 0.33, P = 0.03) cohorts. Also, DV3 showed a significant positive correlation with normalized choroidal intensity in both the groups (Amish: r = 0.30, P = 0.02; non-Amish: r = 0.32, P = 0.04). Choroidal thickness was negatively correlated with normalized choroidal intensity in both Amish (r = -0.71, P = 0.001) and non-Amish (r = -0.43, P = 0.01) groups. Normalized choroidal intensity was the most significant constant predictor of DV in both the Amish and non-Amish groups. Choroidal intensity, but not choroidal thickness, seems to be associated with drusen volume in Amish and non-Amish populations. These observations suggest that choroidal parameters beyond thickness warrant further study in the setting of age-related macular degeneration

    Risk Factors for Progression of Age-Related Macular Degeneration: Population-Based Amish Eye Study

    No full text
    Objective: To evaluate the optical coherence tomography (OCT)-based risk factors for progression to late age-related macular degeneration (AMD) in a population-based study of elderly Amish. Methods: A total of 1332 eyes of 666 consecutive subjects who completed a 2-year follow-up visit were included in this multicenter, prospective, longitudinal, observational study. Imaging features were correlated with 2-year incidence of late AMD development. Odds ratios for imaging features were estimated from logistic regression. Baseline OCT images were reviewed for the presence of drusen volume ≥0.03 mm3 in the central 3 mm ring, intraretinal hyperreflective foci (IHRF), hyporeflective drusen cores (hDC), subretinal drusenoid deposits (SDD), and drusenoid pigment epithelium detachment (PED). Subfoveal choroidal thickness, drusen area, and drusen volume within 3 and 5 mm circles centered on the fovea were also assessed. Results: Twenty-one (1.5%) of 1332 eyes progressed to late AMD by 2 years. The mean age of the study subjects was 65 ± 10.17 (±SD) years and 410 subjects were female. Univariate logistic regression showed that drusen area and volume in both 3 mm and 5 mm circles, subfoveal choroidal thickness, drusen volume ≥ 0.03 mm3 in the 3 mm ring, SDD, IHRF, and hDC were all associated with an increased risk for development of late AMD. The multivariate regression model identified that drusen volume in the 3 mm ring (OR: 2.59, p = 0.049) and presence of IHRF (OR: 57.06, p < 0.001) remained as independent and significant risk factors for progression to late AMD. Conclusions: This population-based study confirms previous findings from clinic-based studies that high central drusen volume and IHRF are associated with an increased risk of progression to late AMD. These findings may be of value in risk-stratifying patients in clinical practice or identifying subjects for early intervention clinical trials

    Reproducibility of qualitative assessment of drusen volume in eyes with age related macular degeneration

    No full text
    BACKGROUNDAlthough an optical coherence tomography (OCT)-derived central drusen volume ≥0.03 mm3 has been found to be a risk factor for progression to late age-related macular degeneration (AMD), this parameter is not currently available on most OCT devices or acquisition protocols. The purpose of this study was to evaluate the ability of human graders to qualitatively assess drusen volume by inspection of OCT B-scans. METHODS100 subjects (200 eyes) from the Amish Eye Study diagnosed with early or intermediate AMD underwent OCT imaging with both Cirrus OCT and Spectralis OCT. Drusen volume was automatically computed from the Cirrus OCT volumes using the Cirrus Advanced RPE Analysis software. Spectralis volume scans were reviewed by two independent, masked graders who were asked to determine whether the central drusen volume was ≥0.03 mm3. Cohen's kappa coefficients were computed to assess the agreement. RESULTSAfter excluding 11 eyes with poor image quality and 5 eyes used for training of the graders, the remaining 184 eyes were included in this analysis. The agreement between the graders and the automated evaluation of drusen volume by the Cirrus OCT was excellent with K = 0.88 for grader 1 and K = 0.82 for grader 2. The agreement between graders was also excellent with a K = 0.88. CONCLUSIONSThe presence of a high central drusen volume can be assessed reliably by qualitative inspection of OCT B-scans. This approach may be useful in the assessment of risk for progression to late AMD

    CHOROIDAL VASCULARITY INDEX AND CHOROIDAL THICKNESS IN EYES WITH RETICULAR PSEUDODRUSEN

    No full text
    To evaluate choroidal vascularity index (CVI), choroidal thickness, choroidal volume, and choroidal intensity in subjects with nonneovascular age-related macular degeneration (NNVAMD) with and without reticular pseudodrusen (RPD). We included 60 eyes of 35 subjects with NNVAMD (including 30 eyes of 18 subjects with RPD) and 30 eyes of 17 age-matched healthy individuals from the ongoing Amish Eye study. The choroid was segmented from dense volume spectral domain optical coherence tomography scans and choroidal thickness (microns), choroidal intensity (log units), and choroidal volume (mm) from the entire macula (6 × 6 mm) were computed. A central horizontal B-scan was binarized and the luminal and stromal portions of the choroid were segmented. Choroidal vascularity index (%) was calculated as the ratio of luminal area to total choroid area. Choroidal parameters were compared between the groups by pairwise comparisons using the Student's t-test. The CVI was significantly lower in healthy eyes compared to those with RPD (53.43 ± 8.51 vs. 54.76 ± 4.83, P < 0.001). The CVI was also significantly lower in NNVAMD eyes without RPD compared to those with RPD (50.09 ± 7.51 vs. 54.76 ± 4.83, P = 0.006). There was no difference in CVI between healthy eyes and NNVAMD eyes without RPD (P = 0.84). Choroidal thickness and choroidal volume were significantly higher in NNVAMD without RPD (P < 0.05); and significantly lower in NNVAMD with RPD (P < 0.05) when compared with normal eyes. Choroidal intensity was significantly higher in NNVAMD with RPD when compared with normal eyes (P = 0.02) and NNVAMD eyes without RPD (P = 0.001). Multiple choroidal parameters reflecting the status of the choroidal vasculature and stroma seem to be altered in eyes with RPD compared with both normal eyes and NNVAMD eyes without RPD. These findings may provide insights into the pathophysiology of RPD

    AMISH EYE STUDY: Baseline Spectral Domain Optical Coherence Tomography Characteristics of Age-Related Macular Degeneration

    No full text
    To describe spectral domain optical coherence tomography (SD-OCT) findings in an Amish cohort to assess SD-OCT markers for early age-related macular degeneration (AMD). The authors performed a family-based prospective cohort study of 1,146 elderly Amish subjects (age range 50-99 years) (2,292 eyes) who had a family history of at least 1 individual with AMD. All subjects underwent complete ophthalmic examinations, SD-OCT using both Cirrus and Spectralis (20 × 20° scan area) instruments, fundus autofluorescence, infrared imaging, and color fundus photography. Spectral domain optical coherence tomography characteristics were analyzed in subjects with AMD (with and without subretinal drusenoid deposits [SDDs]) and normal healthy cohorts. Participants' mean age was 65.2 years (SD ± 11). Color fundus photographic findings in 596 (53%) subjects (1,009 eyes) were consistent with AMD; the remaining 478 (43%) subjects showed no signs of AMD. The choroid was significantly thinner on OCT (242 ± 76 µm, P < 0.001) in those with AMD compared with those without (263 ± 63 µm). Subretinal drusenoid deposits were found in 143 eyes (7%); 11 of the 143 eyes (8%) had no other manifestations of AMD. Drusen volume (P < 0.001) and area of geographic atrophy (P < 0.001) were significantly greater, and choroid was significantly (P < 0.001) thinner in subjects with SDDs versus those without SDDs. The authors describe spectral domain optical coherence tomography characteristics in an elderly Amish population with and without AMD, including the frequency of SDD. Although relatively uncommon in this population, the authors confirmed that SDDs can be found in the absence of other features of AMD and that eyes with SDDs have thinner choroids

    Faster Sensitivity Loss around Dense Scotomas than for Overall Macular Sensitivity in Stargardt Disease: ProgStar Report No. 14

    No full text
    corecore