6 research outputs found

    Prepatterning of differentiation-driven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B

    Get PDF
    Dynamic interactions of nuclear lamins with chromatin through lamin-associated domains (LADs) contribute to spatial arrangement of the genome. Here, we provide evidence for prepatterning of differentiation-driven formation of lamin A/C LADs by domains of histone H2B modified on serine 112 by the nutrient sensor O-linked N-acetylglucosamine (H2BS112GlcNAc), which we term GADs. We demonstrate a two-step process of lamin A/C LAD formation during in vitro adipogenesis, involving spreading of lamin A/C–chromatin interactions in the transition from progenitor cell proliferation to cell-cycle arrest, and genome-scale redistribution of these interactions through a process of LAD exchange within hours of adipogenic induction. Lamin A/C LADs are found both in active and repressive chromatin contexts that can be influenced by cell differentiation status. De novo formation of adipogenic lamin A/C LADs occurs nonrandomly on GADs, which consist of megabase-size intergenic and repressive chromatin domains. Accordingly, whereas predifferentiation lamin A/C LADs are gene-rich, post-differentiation LADs harbor repressive features reminiscent of lamin B1 LADs. Release of lamin A/C from genes directly involved in glycolysis concurs with their transcriptional up-regulation after adipogenic induction, and with downstream elevations in H2BS112GlcNAc levels and O-GlcNAc cycling. Our results unveil an epigenetic prepatterning of adipogenic LADs by GADs, suggesting a coupling of developmentally regulated lamin A/C-genome interactions to a metabolically sensitive chromatin modification

    PML protein organizes heterochromatin domains where it regulates histone H3.3 deposition by ATRX/DAXX

    No full text
    Maintenance of chromatin homeostasis involves proper delivery of histone variants to the genome. The interplay between different chaperones regulating the supply of histone variants to distinct chromatin domains remains largely undeciphered. We report a role of promyelocytic leukemia (PML) protein in the routing of histone variant H3.3 to chromatin and in the organization of megabase-size heterochromatic PML-associated domains that we call PADs. Loss of PML alters the heterochromatic state of PADs by shifting the histone H3 methylation balance from K9me3 to K27me3. Loss of PML impairs deposition of H3.3 by ATRX and DAXX in PADs but preserves the H3.3 loading function of HIRA in these regions. Our results unveil an unappreciated role of PML in the large-scale organization of chromatin and demonstrate a PML-dependent role of ATRX/DAXX in the deposition of H3.3 in PADs. Our data suggest that H3.3 loading by HIRA and ATRX-dependent H3K27 trimethylation constitute mechanisms ensuring maintenance of heterochromatin when the integrity of these domains is compromised

    LXRα Regulates ChREBPα Transactivity in a Target Gene-Specific Manner through an Agonist-Modulated LBD-LID Interaction

    No full text
    The cholesterol-sensing nuclear receptor liver X receptor (LXR) and the glucose-sensing transcription factor carbohydrate responsive element-binding protein (ChREBP) are central players in regulating glucose and lipid metabolism in the liver. More knowledge of their mechanistic interplay is needed to understand their role in pathological conditions like fatty liver disease and insulin resistance. In the current study, LXR and ChREBP co-occupancy was examined by analyzing ChIP-seq datasets from mice livers. LXR and ChREBP interaction was determined by Co-immunoprecipitation (CoIP) and their transactivity was assessed by real-time quantitative polymerase chain reaction (qPCR) of target genes and gene reporter assays. Chromatin binding capacity was determined by ChIP-qPCR assays. Our data show that LXRα and ChREBPα interact physically and show a high co-occupancy at regulatory regions in the mouse genome. LXRα co-activates ChREBPα and regulates ChREBP-specific target genes in vitro and in vivo. This co-activation is dependent on functional recognition elements for ChREBP but not for LXR, indicating that ChREBPα recruits LXRα to chromatin in trans. The two factors interact via their key activation domains; the low glucose inhibitory domain (LID) of ChREBPα and the ligand-binding domain (LBD) of LXRα. While unliganded LXRα co-activates ChREBPα, ligand-bound LXRα surprisingly represses ChREBPα activity on ChREBP-specific target genes. Mechanistically, this is due to a destabilized LXRα:ChREBPα interaction, leading to reduced ChREBP-binding to chromatin and restricted activation of glycolytic and lipogenic target genes. This ligand-driven molecular switch highlights an unappreciated role of LXRα in responding to nutritional cues that was overlooked due to LXR lipogenesis-promoting function
    corecore