250 research outputs found

    Maximal nowhere dense PP-sets in basically disconnected spaces and FF-spaces

    Get PDF
    summary:In [5] the following question was put: are there any maximal n.d. sets in ω\omega^*? Already in [9] the negative answer (under {\bf MA}) to this question was obtained. Moreover, in [9] it was shown that no PP-set can be maximal n.d. In the present paper the notion of a maximal n.d. PP-set is introduced and it is proved that under {\bf CH} there is no such a set in ω\omega^*. The main results are Theorem 1.10 and especially Theorem 2.7(ii) (with Example in Section 3) in which the problem of the existence of maximal n.d. PP-sets in basically disconnected compact spaces with rich families of n.d. PP-sets is actually solved

    Radiation Pressure Dominate Regime of Relativistic Ion Acceleration

    Full text link
    The electromagnetic radiation pressure becomes dominant in the interaction of the ultra-intense electromagnetic wave with a solid material, thus the wave energy can be transformed efficiently into the energy of ions representing the material and the high density ultra-short relativistic ion beam is generated. This regime can be seen even with present-day technology, when an exawatt laser will be built. As an application, we suggest the laser-driven heavy ion collider.Comment: 10 pages, 4 figure

    Autoresonance in a Dissipative System

    Full text link
    We study the autoresonant solution of Duffing's equation in the presence of dissipation. This solution is proved to be an attracting set. We evaluate the maximal amplitude of the autoresonant solution and the time of transition from autoresonant growth of the amplitude to the mode of fast oscillations. Analytical results are illustrated by numerical simulations.Comment: 22 pages, 3 figure

    Tunable high-energy ion source via oblique laser pulse incidence on a double-layer target

    Full text link
    The laser-driven acceleration of high quality proton beams from a double-layer target, comprised of a high-Z ion layer and a thin disk of hydrogen, is investigated with three-dimensional particle-in-cell simulations in the case of oblique incidence of a laser pulse. It is shown that the proton beam energy reaches its maximum at a certain incidence angle of the laser pulse, where it can be much greater than the energy at normal incidence. The proton beam propagates at some angle with respect to the target surface normal, as determined by the proton energy and the incidence angle

    Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications

    Full text link
    Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be used for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances, is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.Comment: 22 pages, 12 figures, review pape

    Perturbative analysis of wave interactions in nonlinear systems

    Full text link
    This work proposes a new way for handling obstacles to asymptotic integrability in perturbed nonlinear PDEs within the method of Normal Forms - NF - for the case of multi-wave solutions. Instead of including the whole obstacle in the NF, only its resonant part is included, and the remainder is assigned to the homological equation. This leaves the NF intergable and its solutons retain the character of the solutions of the unperturbed equation. We exploit the freedom in the expansion to construct canonical obstacles which are confined to te interaction region of the waves. Fo soliton solutions, e.g., in the KdV equation, the interaction region is a finite domain around the origin; the canonical obstacles then do not generate secular terms in the homological equation. When the interaction region is infifnite, or semi-infinite, e.g., in wave-front solutions of the Burgers equation, the obstacles may contain resonant terms. The obstacles generate waves of a new type, which cannot be written as functionals of the solutions of the NF. When an obstacle contributes a resonant term to the NF, this leads to a non-standard update of th wave velocity.Comment: 13 pages, including 6 figure

    Proton Driven Plasma Wakefield Acceleration

    Full text link
    Plasma wakefield acceleration, either laser driven or electron-bunch driven, has been demonstrated to hold great potential. However, it is not obvious how to scale these approaches to bring particles up to the TeV regime. In this paper, we discuss the possibility of proton-bunch driven plasma wakefield acceleration, and show that high energy electron beams could potentially be produced in a single accelerating stage.Comment: 13 pages, 4 figure

    Tailored biological retention and efficient clearance of pegylated ultra-small MnO nanoparticles as positive MRI contrast agents for molecular imaging

    Get PDF
    A majority of MRI procedures requiring intravascular injections of contrast agents are performed with paramagnetic chelates. Such products induce vascular signal enhancement and they are rapidly excreted by the kidneys. Unfortunately, each chelate is made of only one paramagnetic ion, which, taken individually, has a limited impact on the MRI signal. In fact, the detection of molecular events in the nanomolar range using T-1-weighted MRI sequences requires the design of ultra-small particles containing hundreds of paramagnetic ions per contrast agent unit. Ultra-small nanoparticles of manganese oxide (MnO, 6-8 nm diameter) have been developed and proposed as an efficient and at least 1000 x more sensitive “positive” MRI contrast agent. However no evidence has been found until now that an adequate surface treatment of these particles could maintain their strong blood signal enhancement, while allowing their rapid and efficient excretion by the kidneys or by the hepatobiliairy pathway. Indeed, the sequestration of MnO particles by the reticuloendothelial system followed by strong uptake in the liver and in the spleen could potentially lead to Mn2+-induced toxicity effects. For ultra-small MnO particles to be applied in the clinics, it is necessary to develop coatings that also enable their efficient excretion within hours. This study demonstrates for the first time the possibility to use MnO particles as T-1 vascular contrast agents, while enabling the excretion of > 70% of all the Mn injected doses after 48 h. For this, small, biocompatible and highly hydrophilic pegylated bis-phosphonate dendrons (PDns) were grafted on MnO particles to confer colloidal stability, relaxometric performance, and fast excretion capacity. The chemical and colloidal stability of MnO@PDn particles were confirmed by XPS, FTIR and DLS. The relaxometric performance of MnO@PDns as “positive” MRI contrast agents was assessed (r(1) = 4.4 mM(-1) s(-1), r(2)/r(1) = 8.6; 1.41 T and 37 degrees C). Mice were injected with 1.21 mu g Mn per kg (22 mu mol Mn per kg), and scanned in MRI up to 48 h. The concentration of Mn in key organs was precisely measured by neutron activation analysis and confirmed, with MRI, the possibility to avoid RES nanoparticle sequestration through the use of phosphonate dendrons. Due to the fast kidney and hepatobiliairy clearance of MnO particles conferred by PDns, MnO nanoparticles can now be considered for promising applications in T1-weighted MRI applications requiring less toxic although highly sensitive “positive” molecular contrast agents

    Unlimited Energy Gain in the Laser-Driven Radiation Pressure Dominant Acceleration of Ions

    Full text link
    The energy of the ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region increasing the energy and the longitudinal velocity of remaining ions. In the relativistic limit, the ions become phase-locked with respect to the electromagnetic wave resulting in the unlimited ion energy gain. This effect and the use of optimal laser pulse shape provide a new approach for great enhancing the energy of laser accelerated ions.Comment: 30 pages, 9 figures, misprints correcte

    Nonlinear Lattice Waves in Random Potentials

    Full text link
    Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transition, quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field. We will discuss recent advances in the dynamics of nonlinear lattice waves in random potentials. In the absence of nonlinear terms in the wave equations, Anderson localization is leading to a halt of wave packet spreading. Nonlinearity couples localized eigenstates and, potentially, enables spreading and destruction of Anderson localization due to nonintegrability, chaos and decoherence. The spreading process is characterized by universal subdiffusive laws due to nonlinear diffusion. We review extensive computational studies for one- and two-dimensional systems with tunable nonlinearity power. We also briefly discuss extensions to other cases where the linear wave equation features localization: Aubry-Andre localization with quasiperiodic potentials, Wannier-Stark localization with dc fields, and dynamical localization in momentum space with kicked rotors.Comment: 45 pages, 19 figure
    corecore