19 research outputs found

    In-situ catalytic pyrolysis reaction of sugarcane bagasse over nickel-cerium/hzsm-5 for enhanced hydrocarbons in pyrolysis oil

    Get PDF
    The catalytic of oxygenated pyrolysis vapour over HZSM-5 catalyst is of the preferred method to enhance the quality of pyrolysis oil. However, the content of C6 – C8 hydrocarbons in pyrolysis oil produced by this method is still low. Thus, the main aim of this study is to investigate the in-situ catalytic of oxygenated pyrolysis vapours from sugarcane bagasse into enhanced C6 – C8 hydrocarbons in pyrolysis oil over nickel-cerium/HZSM-5 catalyst. The first aim was to synthesize catalysts via incipient wetness impregnation and characterize via X-ray diffraction, field emission scanning electron microscopy-energy dispersive X-ray, Brunauer Emmett Teller, Fourier transform infrared, and temperature programmed desorption of ammonia. The HZSM-5 was fixed at 94 wt.%, while the balance 6 wt.% was impregnated at nickel to cerium mass ratios as follows: 1:5 (NC1), 2:4 (NC2), 3:3 (NC3), 4:2 (NC4), and 5:1 (NC5). The second aim was to investigate the performance of catalyst in the catalytic of oxygenated pyrolysis vapours into enhanced C6 – C8 hydrocarbons via in-situ fixed bed reactor at pyrolysis reaction temperature ranging from 400 – 600 °C. The catalyst to biomass mass ratios was as follows: 0.5:1.0 (CB1), 1.0:1.0 (CB2), 1.5:1.0 (CB3), 2.0:1.0 (CB4), 2.5:1.0 (CB5), and 3.0:1.0 (CB6). The results show that the in-situ catalytic of oxygenated pyrolysis vapours were significantly influenced by pyrolysis reaction temperatures, catalyst to biomass mass ratios, and nickel to cerium mass ratios. The highest total contents of C6 – C8 hydrocarbons in pyrolysis oil (8.82%) is attained at pyrolysis reaction temperature of 500 °C, catalyst to biomass mass ratio of 1:1, and nickel to cerium mass ratio of 3:3. The third aim was to optimize the process parameters via response surface methodology, in which the optimized C6 – C8 hydrocarbons in pyrolysis oil (8.90%) can be achieved at pyrolysis reaction temperature of 505 °C, catalyst to biomass mass ratio of 1.1:1.0, nickel to cerium mass ratio of 3.14:2.86. The final aim was to perform the kinetic analysis of catalytic pyrolysis process. For the kinetic analysis, the catalytic pyrolysis has achieved higher activation energy (34.02 – 122.23 kJ/mol) than the non-catalytic pyrolysis (17.17 – 66.90 kJ/mol) using the Flynn-Wall-Ozawa method. The reaction mechanisms of non-catalytic and catalytic pyrolysis obtained via the Coats-Redfern method follows power law (n = 1) and chemical reaction (n = 2) respectively. Finally, the catalytic of oxygenated pyrolysis vapours over nickel-cerium/HZSM-5 catalyst can produce high contents of hydrocarbon fuel directly from sugarcane bagasse

    Kinetic analysis of Malaysia type biomasses via thermogravimetric analyser (TGA)

    Get PDF
    The kinetic behaviour of biomass pyrolysis samples was successfully studied via thermogravimetric analysis. The biomass samples were empty fruit bunch, oil palm trunk, rice husk, coconut copra, sawdust, coconut shell, sugarcane bagasse, and wood bark. The analysis was performed in a nitrogen atmosphere from 30 to 700°C. The effect of heating rate on kinetic behaviour of biomass at two different high heating rates was evaluated at 40°C/min (HR1) and 80°C/min (HR2). The kinetic parameters of biomass samples such as pre-exponential factor (s-1), activation energy (kJ/mol), and reaction order (n) were determined using one-step global kinetic model. The wood bark sample has the lowest activation energy (38.14 kJ/mol), while coconut copra was reported for the highest activation energy (145.42 kJ/mol). High positive activation energy was achieved at a higher heating rate (HR2) than at lower heating rate (HR1) for biomass samples

    Catalytic co-pyrolysis of empty fruit bunch and high-density polyethylene mixtures over rice husk ash: thermogravimetric, kinetic and thermodynamic analyses

    Get PDF
    Rice husk ash (RHA) has been used as a catalyst precursor but there are lack of studies on the application of the resulting catalyst. This study allows researchers to have an insight on using RHA-sourced catalysts in pyrolysis and be encouraged to utilize waste materials in the future. The goal of this study is to examine the effect of catalysts derived from rice husk ash (RHA) using the solvent-free method, labelled as RHA-T, on the catalytic co-pyrolysis of empty fruit bunch (EFB) and high-density polyethylene (HDPE) via thermogravimetric analyser (TGA). Comparisons were then made with co-pyrolysis and catalytic co-pyrolysis over raw RHA and Hydrogen-exchanged Zeolite Socony Mobil-5 (HZSM-5). Thermogravimetric analysis was conducted (EFB-to-HDPE mass ratio of 1:1, catalyst-to-feedstock mass ratio of 1:1) in a nitrogen atmosphere, where samples were heated from 30 °C until 700 °C (heating rate 20 °C/min). The order of runs with highest mass loss in the second phase is as follows, with the term ‘BP’ indicating the biomass-plastic feedstock: BP-RHA-T (98.17 wt%), BP-RHA (96.25 wt%), BP (86.82 wt%) and BP-HZSM-5 (70.59 wt%). Kinetic analysis using Coats-Redfern method and comparing between different diffusional reaction models showed that using BP-RHA-T follows a one-dimensional diffusion reaction, similar to the non-catalytic run. Using RHA-T resulted in higher activation energy (83.03 kJ/mol to 84.91 kJ/mol) compared to the non-catalytic run (62.39 kJ/mol to 68.97 kJ/mol). Thermodynamic analysis showed the pyrolysis runs were endothermic and non-spontaneous. Using RHA-T resulted in a higher change of enthalpy, a lower change of Gibbs free energy and a less negative change of entropy. It can be concluded that applying catalysts synthesized using low-cost materials like RHA can improve the degradation of EFB and HDPE via pyrolysis, compared to commercial HZSM-5 catalysts

    Investigation on thermochemical behaviour of Malaysia biomasses via Thermogravimetric Analysis (TGA)

    Get PDF
    Biomass is a renewable resource with great potential as an alternative to fossil fuels for supplying energy. The flash pyrolysis process has been subject of intense research in the last decades in converting biomass into a convenient and effective fuel Thermogravimetric analysis , (TGA) is used to study the thermal behaviour of carbonaceous materials. In the present study, the characteristics and thermal decomposition behaviour of eight local biomasses (empty fruit bunch (EFB). oil palm trunk (OPT), rice husk, coconut copra, saw dust, coconut shell, bagasse and wood bark) in Malaysia upon fast pyrolysis were studied. The elemental properties of the feedstock were characterized by an elemental analyzer while thermal properties were investigated using thermogravimetric analyzer (TGA). Analysis is carried out in an inert nitrogen atmosphere from ambient temperature to 700 °C. In this work, the particle sizes varied in the range of 0.30< dp <0.50 mm at a heating rate of 80 °C/min. Three reaction zones corresponding to moisture evolution, hemiceilulose-cellulose degradation and lignin degradation are observed for all the biomass samples. The resuits show that, Phase I (moisture evolution) was identified between 25 and 137 °C for saw dust as indicated in DTG curve and has highest peak among the samples. Two distinct evolution profiles were observed for coconut shell, coconut copra, bagasse, rice husk and EFB at Phase 11 (devolatilization). At Phase III (lignin decomposition), it is observed that the lignin gradually degrades over a wide range of temperature (450-700 °C). However, when the temperature reaches 650 °C, the degradation rates are no longer significant as most volatiles had already been pyrolysed

    Catalytic pyrolysis of high-density polyethylene over nickel-waste chicken eggshell/HZSM-5

    Get PDF
    The main objective of the current work is to investigate the effect of nickel–waste chicken eggshell modified Hydrogen exchanged Zeolite Socony Mobil-5 (Ni-WCE/HZSM-5) on pyrolysis of high-density polyethylene (HDPE). Ni-WCE/HZSM-5 was synthesized via the impregnation incipient wetness (IWI) method with Ni and WCE mass loading of 4 and 12 wt% respectively. HZSM-5, CaO, WCE, WCE/HZSM-5, and Ni/HZSM-5 were prepared for comparison purposes with Ni-WCE/HZSM-5. All the synthesized catalysts were characterized for phase analysis, metal loading, surface morphology, and textural properties. The impregnation of nickel and WCE had significantly affected the original framework of HZSM-5, where the crystallinity percentage and average crystal size of HZSM-5 dropped to 44.97% and increased to 47.90 nm respectively. The surface morphology of HZSM-5 has drastically changed from a cubic-like shape into a spider web-like surface after the impregnation of WCE. The BET surface area of HZSM-5 has been lowered due to the impregnation of nickel and WCE, but the total pore volume has increased greatly from 0.2291 cm3/g to 0.2621 cm3/g. The catalyst performance was investigated in the pyrolysis of HDPE via a fixed bed reactor and the pyrolysis oil was further analysed to evaluate the distribution of C6 to C9> hydrocarbons. Among the tested catalytic samples, the highest pyrolysis oil yield was achieved by WCE (80%) followed by CaO (78%), WCE/HZSM-5 (63%), HZSM-5 (61%), Ni/HZSM-5 (44%) and Ni-WCE/HZSM-5 (50%). For hydrocarbon distribution in pyrolysis oil, the Ni/HZSM-5 produced the highest of total C6 and C7 hydrocarbons at 12% and 27% respectively followed by WCE/HZSM-5 (4% and 20%), non-catalytic (5% and 13%), Ni-WCE/HZSM-5 (0% and 15%), WCE (0% and 10%), HZSM-5 (0% and 6%) and CaO (0% and 0%)

    Catalytic upgrading of biomass-derived pyrolysis vapour over metal-modified HZSM-5 into BTX: a comprehensive review

    Get PDF
    This paper provides an updated and comprehensive review on the catalytic upgrading of biomass-derived pyrolysis vapours over metal-modified HZSM-5 catalyst into bio-aromatic hydrocarbons. The catalytic upgrading of biomass pyrolysis vapours seems to be a promising technology in generating gasoline-type bio-aromatic hydrocarbons, i.e. benzene, toluene and xylene (BTX). Biomass-derived raw pyrolysis oil has high oxygenated compounds that deteriorate pyrolysis oil properties and limits its applications. Metal modification of hydrogen exchanged Zeolite Socony Mobil Five (HZSM-5) catalyst has gained attention in a biomass pyrolysis research area due to the beneficial effects on upgrading the oxygenated pyrolysis vapours into BTX-enriched pyrolysis oils. The influence of metals (alkali and alkaline earth metals, transition metals and rare earth metals) as bi-functional or multifunctional activity on HZSM-5 catalyst during pyrolysis has been addressed. The effect of reaction temperature, the type of metals, metal contents, the silica-to-alumina ratio of catalyst and the catalyst-tobiomass ratio are critically discussed for maximum production of monocyclic aromatic hydrocarbons during the upgrading of pyrolysis vapours. Finally, concluding remarks on metal-modified zeolite catalyst and future recommendation in upgrading biomass pyrolysis vapours are presented

    Thermal characterization of Malaysian biomass via thermogravimetric analysis

    Get PDF
    In this work, thermal degradation behavior of six local biomasses such as empty fruit bunch, rice husk, coconut pulp, saw dust, coconut shell, and sugarcane bagasse in Malaysia via pyrolysis was studied. The pyrolysis process was carried out from 25 to 700 °C under nitrogen atmosphere flowing at 150 ml/min via a thermogravimetric analyzer. The effect of biomass type was investigated on pyrolysis behavior. The particle size of biomass was in the range of 0.3 ≤ dp1 < 0.5 mm, whereas the heating rate was fixed at 80 °C/min. The thermogravimetric analysis (TGA) data were divided into three phases of degradation: moisture evolution, hemicellulose-cellulose degradation, and lignin degradation. The results showed that all biomass samples degraded between 25 and 170 °C in Phase I of moisture evolution. Among the biomass samples, coconut pulp achieved the highest mass loss (81.9%) in Phase II of hemicellulose-cellulose degradation. Lignin in all biomass samples gradually degraded from 450 to 700 °C in Phase III of lignin degradation. This study provides an important basis in understanding the intrinsic thermochemistry behind degradation reactions

    Catalytic co-pyrolysis of biomass and plastic wastes over metal-modified HZSM-5: a mini critical review

    No full text
    The challenges faced by the fossil fuel industry has led to the exploration of biomass-derived fuel. Biomass can be converted to biofuels via pyrolysis and can be paired with plastic waste to improve biofuel yield and quality. This mini review provides concise information on recent advances in pyrolysis, focusing on using waste, specifically agricultural residues and plastic waste, as resources. Next, discussion is made on pyrolysis of biomass and plastic waste, respectively, followed by co-pyrolysis of biomass and plastic waste. Catalytic co-pyrolysis, including zeolite catalysts and metal-modified HZSM-5 is then reviewed. Finally, the future perspective of this research is discussed

    Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil

    Get PDF
    The main objective of the present work is to study the effect of Nickel-Cerium/Alumina multifunctional catalyst (Ni-Ce/Al2O3) mass loading on pyrolysis of coconut copra and rice husk via thermogravimetric analysis. The sample is pyrolyzed from 30 �C up to 700 �C at a constant heating rate of 10 �C/min in nitrogen environment flowing at 150 mL/min. The multifunctional catalyst (Ni-Ce/Al2O3) was prepared via incipient wet impregnation method. Pyrolysis feedstocks were prepared based on biomass to catalyst mass loading ratio. The TG-DTG curve shows that the presences of catalyst significantly affect the devolatilization rate of biomass. Among TGA-pyrolyzed coconut copra samples, the CC-3 (1:0.15) has achieved the highest mass loss (83.3%). For rice husk, the non-catalytic sample has attained the highest mass loss of volatile matter (48.7%). In addition, the kinetic characteristics of non-catalytic and catalytic pyrolysis of biomass were also studied and calculated by employing the Coats-Redfern integral method. The CC-1 has lower activation energy (53.10 kJ/mol) than that of catalytic sample particularly CC-3 (79.28 kJ/mol). The presence of a catalyst on rice husk is able to reduce the activation energy of noncatalytic rice husk sample from 49.78 to 45.24 kJ/mol

    The effect of calcium oxide from waste chicken eggshell on HZSM-5

    No full text
    The main objective of the current work is to investigate the influence of waste chicken eggshell (WCE) as an alternative source of calcium oxide (CaO) on Hydrogen exchanged Zeolite Socony Mobil-5 catalyst (HZSM-5). WCE as promoter was loaded at 1wt.% on HZSM-5 catalyst which act as support via incipient wetness impregnation method. The HZSM-5, commercial CaO, and WCE were individually prepared for comparison with WCE/HZSM-5. Synthesized catalysts were characterized via X-Ray Diffraction to analyse the phase purity, Field Emission Scanning Electron Microscopy to analyse the surface morphology, and Brunauer-Emmett-Teller to analyse the surface area and pore size. The addition of WCE on HZSM-5 has significantly affected the framework structure of HZSM-5 where the crystallinity percentage and average crystal size of HZSM-5 drastically dropped to 44.97 % and 45.00 nm. The original cubic-like structure in HZSM-5 has significantly altered into a netlike structure after the impregnation of WCE. A similar effect of alteration was observed on BET surface area dropped from 365.81 m2/g (HZSM-5) to 292.14 m2/g (WCE/HZSM-5). Interestingly, the pore diameter of WCE/HZSM-5, WCE, and HZSM-5 catalysts was similar at 3.88 nm, 3.87 nm, and 3.87 nm respectively. WCE and commercial CaO almost share similar textural properties. Hence, the addition of WCE as an alternative source of calcium oxide into HZSM-5 can provide a high catalytic reaction and stable surface in catalytic cracking of heavy hydrocarbons into small hydrocarbons with longer catalyst lifetimes
    corecore