2,009 research outputs found

    Vortex sorter for Bose-Einstein condensates

    Get PDF
    We have designed interferometers that sort Bose-Einstein condensates into their vortex components. The Bose-Einstein condensates in the two arms of the interferometer are rotated with respect to each other through fixed angles; different vortex components then exit the interferometer in different directions. The method we use to rotate the Bose-Einstein condensates involves asymmetric phase imprinting and is itself new. We have modelled rotation through fixed angles and sorting into vortex components with even and odd values of the topological charge of 2-dimensional Bose-Einstein condensates in a number of states (pure or superposition vortex states for different values of the scattering length). Our scheme may have applications for quantum information processing.Comment: 4 pages, high resolution figures can be obtained from the author

    Systematic challenges for future gravitational wave measurements of precessing binary black holes

    Get PDF
    The properties of precessing, coalescing binary black holes are presently inferred through comparison with two approximate models of compact binary coalescence. In this work we show these two models often disagree substantially when binaries have modestly large spins (a≳0.4a\gtrsim 0.4) and modest mass ratios (q≳2q\gtrsim 2). We demonstrate these disagreements using standard figures of merit and the parameters inferred for recent detections of binary black holes. By comparing to numerical relativity, we confirm these disagreements reflect systematic errors. We provide concrete examples to demonstrate that these systematic errors can significantly impact inferences about astrophysically significant binary parameters. For the immediate future, parameter inference for binary black holes should be performed with multiple models (including numerical relativity), and carefully validated by performing inference under controlled circumstances with similar synthetic events.Comment: 12 pages, 9 figure

    Studying stellar binary systems with the Laser Interferometer Space Antenna using Delayed Rejection Markov chain Monte Carlo methods

    Full text link
    Bayesian analysis of LISA data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramatically reduces the efficiency of the sampling techniques. Here we introduce a new fully Markovian algorithm, a Delayed Rejection Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore these kind of structures and we demonstrate its performance on selected LISA data sets containing a known number of stellar-mass binary signals embedded in Gaussian stationary noise.Comment: 12 pages, 4 figures, accepted in CQG (GWDAW-13 proceedings

    An optimised system for generating multi-resolution DTMS using NASA DTMS datasets

    Get PDF
    Abstract. Within the EU FP-7 iMars project, a fully automated multi-resolution DTM processing chain, called Co-registration ASP-Gotcha Optimised (CASP-GO) has been developed, based on the open source NASA Ames Stereo Pipeline (ASP). CASP-GO includes tiepoint based multi-resolution image co-registration and an adaptive least squares correlation-based sub-pixel refinement method called Gotcha. The implemented system guarantees global geo-referencing compliance with respect to HRSC (and thence to MOLA), provides refined stereo matching completeness and accuracy based on the ASP normalised cross-correlation. We summarise issues discovered from experimenting with the use of the open-source ASP DTM processing chain and introduce our new working solutions. These issues include global co-registration accuracy, de-noising, dealing with failure in matching, matching confidence estimation, outlier definition and rejection scheme, various DTM artefacts, uncertainty estimation, and quality-efficiency trade-offs

    Feedback control of thermal lensing in a high optical power cavity

    Get PDF
    This paper reports automatic compensation of strong thermal lensing in a suspended 80 m optical cavity with sapphire test mass mirrors. Variation of the transmitted beam spot size is used to obtain an error signal to control the heating power applied to the cylindrical surface of an intracavity compensation plate. The negative thermal lens created in the compensation plate compensates the positive thermal lens in the sapphire test mass, which was caused by the absorption of the high intracavity optical power. The results show that feedback control is feasible to compensate the strong thermal lensing expected to occur in advanced laser interferometric gravitational wave detectors. Compensation allows the cavity resonance to be maintained at the fundamental mode, but the long thermal time constant for thermal lensing control in fused silica could cause difficulties with the control of parametric instabilities.This research was supported by the Australian Research Council and the Department of Education, Science and Training and by the U.S. National Science Foundation, through LIGO participation in the HOPF

    A Bayesian approach to the follow-up of candidate gravitational wave signals

    Full text link
    Ground-based gravitational wave laser interferometers (LIGO, GEO-600, Virgo and Tama-300) have now reached high sensitivity and duty cycle. We present a Bayesian evidence-based approach to the search for gravitational waves, in particular aimed at the followup of candidate events generated by the analysis pipeline. We introduce and demonstrate an efficient method to compute the evidence and odds ratio between different models, and illustrate this approach using the specific case of the gravitational wave signal generated during the inspiral phase of binary systems, modelled at the leading quadrupole Newtonian order, in synthetic noise. We show that the method is effective in detecting signals at the detection threshold and it is robust against (some types of) instrumental artefacts. The computational efficiency of this method makes it scalable to the analysis of all the triggers generated by the analysis pipelines to search for coalescing binaries in surveys with ground-based interferometers, and to a whole variety of signal waveforms, characterised by a larger number of parameters.Comment: 9 page

    Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network

    Full text link
    The present operation of the ground-based network of gravitational-wave laser interferometers in "enhanced" configuration brings the search for gravitational waves into a regime where detection is highly plausible. The development of techniques that allow us to discriminate a signal of astrophysical origin from instrumental artefacts in the interferometer data and to extract the full range of information are some of the primary goals of the current work. Here we report the details of a Bayesian approach to the problem of inference for gravitational wave observations using a network of instruments, for the computation of the Bayes factor between two hypotheses and the evaluation of the marginalised posterior density functions of the unknown model parameters. The numerical algorithm to tackle the notoriously difficult problem of the evaluation of large multi-dimensional integrals is based on a technique known as Nested Sampling, which provides an attractive alternative to more traditional Markov-chain Monte Carlo (MCMC) methods. We discuss the details of the implementation of this algorithm and its performance against a Gaussian model of the background noise, considering the specific case of the signal produced by the in-spiral of binary systems of black holes and/or neutron stars, although the method is completely general and can be applied to other classes of sources. We also demonstrate the utility of this approach by introducing a new coherence test to distinguish between the presence of a coherent signal of astrophysical origin in the data of multiple instruments and the presence of incoherent accidental artefacts, and the effects on the estimation of the source parameters as a function of the number of instruments in the network.Comment: 22 page

    Power scalable TEM(oo) CW Nd: YAG laser with thermal lens compensation

    Get PDF
    We present finite-element analyzes and experimental results to validate our approach for building high-power single-mode Nd:YAG lasers. We show that the thermooptical and thermomechanical properties of a slab laser can be controlled. This is essential for the use of the proposed unstable resonator. We include demonstration of an efficient subscale laser operating at 20 W TEM00.D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway and M. W. Hamilto

    Compensation of Strong Thermal Lensing in High Optical Power Cavities

    Get PDF
    In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors such as Advanced LIGO, we show that strong thermal lenses form in accordance with predictions and that they can be compensated using an intra-cavity compensation plate heated on its cylindrical surface. We show that high finesse ~1400 can be achieved in cavities with internal compensation plates, and that the cavity mode structure can be maintained by thermal compensation. It is also shown that the measurements allow a direct measurement of substrate optical absorption in the test mass and the compensation plate.Comment: 8 page
    • …
    corecore