2 research outputs found

    Solid-Supported Lipid Multilayers under High Hydrostatic Pressure

    No full text
    In this work, the structure of solid-supported lipid multilayers exposed to increased hydrostatic pressure was studied <i>in situ</i> by X-ray reflectometry at the solid–liquid interface between silicon and an aqueous buffer solution. The layers’ vertical structure was analyzed up to a maximum pressure of 4500 bar. The multilayers showed phase transitions from the fluid into different gel phases. With increasing pressure, a gradual filling of the sublayers between the hydrophilic head groups with water was observed. This process was inverted when the pressure was decreased, yielding finally smaller water layers than those in the initial state. As is commonly known, water has an abrasive effect on lipid multilayers by the formation of vesicles. We show that increasing pressure can reverse this process so that a controlled switching between multi- and bilayers is possible

    Transmission Surface Diffraction for Operando Studies of Heterogeneous Interfaces

    No full text
    Processes at material interfaces to liquids or to high-pressure gases often involve structural changes that are heterogeneous on the micrometer scale. We present a novel in situ X-ray scattering technique that uses high-energy photons and a transmission geometry for atomic-scale studies under these conditions. Transmission surface diffraction gives access to a large fraction of reciprocal space in a single acquisition, allowing direct imaging of the in-plane atomic arrangement at the interface. Experiments with focused X-ray beams enable mapping of these structural properties with micrometer spatial resolution. The potential of this new technique is illustrated by in situ studies of electrochemical surface phase transitions and deposition processes
    corecore