4,069 research outputs found
Basic principles of hp Virtual Elements on quasiuniform meshes
In the present paper we initiate the study of Virtual Elements. We focus
on the case with uniform polynomial degree across the mesh and derive
theoretical convergence estimates that are explicit both in the mesh size
and in the polynomial degree in the case of finite Sobolev regularity.
Exponential convergence is proved in the case of analytic solutions. The
theoretical convergence results are validated in numerical experiments.
Finally, an initial study on the possible choice of local basis functions is
included
A Virtual Element Method for elastic and inelastic problems on polytope meshes
We present a Virtual Element Method (VEM) for possibly nonlinear elastic and
inelastic problems, mainly focusing on a small deformation regime. The
numerical scheme is based on a low-order approximation of the displacement
field, as well as a suitable treatment of the displacement gradient. The
proposed method allows for general polygonal and polyhedral meshes, it is
efficient in terms of number of applications of the constitutive law, and it
can make use of any standard black-box constitutive law algorithm. Some
theoretical results have been developed for the elastic case. Several numerical
results within the 2D setting are presented, and a brief discussion on the
extension to large deformation problems is included
The Virtual Element Method with curved edges
In this paper we initiate the investigation of Virtual Elements with curved
faces. We consider the case of a fixed curved boundary in two dimensions, as it
happens in the approximation of problems posed on a curved domain or with a
curved interface. While an approximation of the domain with polygons leads, for
degree of accuracy , to a sub-optimal rate of convergence, we show
(both theoretically and numerically) that the proposed curved VEM lead to an
optimal rate of convergence
Virtual Elements for the Navier-Stokes problem on polygonal meshes
A family of Virtual Element Methods for the 2D Navier-Stokes equations is
proposed and analysed. The schemes provide a discrete velocity field which is
point-wise divergence-free. A rigorous error analysis is developed, showing
that the methods are stable and optimally convergent. Several numerical tests
are presented, confirming the theoretical predictions. A comparison with some
mixed finite elements is also performed
Serendipity Face and Edge VEM Spaces
We extend the basic idea of Serendipity Virtual Elements from the previous
case (by the same authors) of nodal (-conforming) elements, to a more
general framework. Then we apply the general strategy to the case of
and conforming Virtual Element Methods, in two and three dimensions
- …