371 research outputs found

    PUK26 THE INFLUENCE OF FUTURE UNRELATED COSTS ON COSTEFFECTIVENESS ESTIMATES:TREATMENT OF HYPERPHOSPHATEMIA WITH LANTHANUM CARBONATE IN PRE-DIALYIS PATIENTS WITH CHRONIC KIDNEY DISEASE

    Get PDF
    OBJECTIVES: A long-standing controversy in health-economics is whether future unrelated costs should be included in cost-effectiveness analyses. This discussion is relevant in Chronic Kidney Disease (CKD) for treatments that delay progression towards dialysis and prolong survival. In this study, we determined the influence of future unrelated costs on the cost-effectiveness of the non-calcium based phosphate binder lanthanum carbonate (LC) when used as second-line treatment for hyperphosphatemia in predialysis patients. METHODS: Time-dependent Markov models were constructed; cohorts of 1000 patients were followed lifelong. Patients not reaching target serum phosphate (SP) levels on first-line calcium based phosphate binders (CB) were treated with LC. This strategy was compared with continued CB treatment. Patient-level data were pooled from two clinical trials, one in predialysis and one in dialysis. Reductions in SP levels delayed progression towards dialysis and prolonged survival. RESULTS: For the predialysis cohort, 544 did not achieve target SP levels

    Mapping the Spread of Malaria Drug Resistance

    Get PDF
    Tim Anderson discusses a new study of molecular variation in alleles at the dihydropteroate synthase locus, which underlies resistance to sulfadoxine, in over 5,000 parasites from 50 locations

    Propulsion biomechanics do not differ between athletic and nonathletic manual wheelchair users in their daily wheelchairs

    Get PDF
    The purpose of this study was to investigate whether athletic and nonathletic manual wheelchair users (MWU) display differences in kinetic and kinematic variables during daily wheelchair propulsion. Thirty-nine manual wheelchair users (athletic n = 25; nonathletic n = 14) propelled their own daily living wheelchair on a roller ergometer at two submaximal speeds for three minutes (1.11 m s−1 and 1.67 m s−1). A 10 camera Vicon motion capture system (Vicon, Motion Systems Ltd. Oxford, United Kingdom) collected three-dimensional kinematics of the upper limbs and thorax at 200 Hz during the final minute of each propulsion trial. Kinetics, kinematics and kinematic variability were compared between athletic and nonathletic groups. Kinematic differences were investigated using statistical parametric mapping. Athletic MWU performed significantly greater physical activity per week compared to nonathletic MWU (920 ± 601 mins vs 380 ± 147 mins, respectively). However, no significant biomechanical differences between athletic and nonathletic MWU were observed during either propulsion speed. During the 1.11 m s−1 trial wheelchair users displayed a stroke frequency of 53 ± 12 pushes/min and a contact angle of 92.5 ± 16.2°. During the 1.67 m s−1 trial the mean stroke frequency was 64 ± 22 pushes/min and contact angle was 85.4 ± 13.6°. Despite the hand being unconstrained during the recovery phase the magnitude of joint kinematic variability was similar across both glenohumeral and scapulothoracic joints during recovery and push phases. To conclude, although athletic MWU participate in more physical activity per week they adopt similar strategies to propel their daily living wheelchair. Investigations of shoulder pain and dailywheelchair propulsion do not need to distinguish between athletic and nonathletic MWU

    Managing shoulder pain in manual wheelchair users:a scoping review of conservative treatment interventions

    Get PDF
    Objective:To review the literature that has explored conservative treatments for the management of shoulder pain in manual wheelchair users.Methods:Five databases were systematically searched in february 2020 for terms related to shoulder pain and manual wheelchair use. Articles were screened and included if they investigated the conservative treatment of shoulder pain in wheelchair users. Participants’ physical characteristics, experimental design and primary and secondary outcome measures were extracted from studies. Studies were grouped according to treatment type to identify gaps in the literature and guide future research.Results:The initial search identified 407 articles, of which 21 studies met the inclusion criteria. Exercise-based treatment interventions were most prevalent (n = 12). A variety of exercise modalities were employed such as strengthening and stretching (n = 7), ergometer training (n = 3), Pilates classes (n = 1) and functional electrical stimulation (n = 1). Only three studies supplemented exercise with an additional treatment type. The Wheelchair Users Shoulder Pain Index was used by 18 studies as the primary measure of shoulder pain. Only seven of these included an objective measure of shoulder function. Participant characteristics varied among studies, and physical activity levels were frequently not reported.Conclusions:Despite the high prevalence of shoulder pain in manual wheelchair users, the number of studies to have explored conservative treatment types is low. Exercise is the most commonly used treatment, which is encouraging as physical inactivity can exacerbate other health conditions. Few studies have adopted interdisciplinary treatment strategies or included objective secondary measures to better understand the mechanisms of pain.<br

    Alterations in shoulder kinematics are associated with shoulder pain during wheelchair propulsion sprints

    Get PDF
    The study purpose was to examine the biomechanical characteristics of sports wheelchair propulsion and determine biomechanical associations with shoulder pain in wheelchair athletes. Twenty wheelchair court-sport athletes (age: 32 +/- 11 years old) performed one submaximal propulsion trial in their sports-specific wheelchair at 1.67 m/s for 3 min and two 10 s sprints on a dual-roller ergometer. The Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI) assessed shoulder pain. During the acceleration phase of wheelchair sprinting, participants propelled with significantly longer push times, larger forces, and thorax flexion range of motion (ROM) than both the maximal velocity phase of sprinting and submaximal propulsion. Participants displayed significantly greater peak glenohumeral abduction and scapular internal rotation during the acceleration phase (20 +/- 9 degrees and 45 +/- 7 degrees) and maximal velocity phase (14 +/- 4 degrees and 44 +/- 7 degrees) of sprinting, compared to submaximal propulsion (12 +/- 6 degrees and 39 +/- 8 degrees). Greater shoulder pain severity was associated with larger glenohumeral abduction ROM (r = 0.59, p = 0.007) and scapular internal rotation ROM (r = 0.53, p = 0.017) during the acceleration phase of wheelchair sprinting, but with lower peak glenohumeral flexion (r = -0.49, p = 0.030), peak abduction (r = -0.48, p = 0.034), and abduction ROM (r = -0.44, p = 0.049) during the maximal velocity phase. Biomechanical characteristics of wheelchair sprinting suggest this activity imposes greater mechanical stress than submaximal propulsion. Kinematic associations with shoulder pain during acceleration are in shoulder orientations linked to a reduced subacromial space, potentially increasing tissue stress

    Scapular kinematic variability during wheelchair propulsion is associated with shoulder pain in wheelchair users

    Get PDF
    The purpose of this study was to investigate whether wheelchair propulsion biomechanics differ between individuals with different magnitudes of shoulder pain. Forty (age 36 11 years) manual wheelchair users propelled their own daily living wheelchair at 1.11 m.s(-1) for three minutes on a dual-roller ergometer. Shoulder pain was evaluated using the Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI). Correlation analyses between spatio-temporal, kinetic and upper limb kinematic variables during wheelchair propulsion and PC-WUSPI scores were assessed. Furthermore, kinematic differences between wheelchair users with no or mild shoulder pain (n = 33) and moderate pain (n = 7) were investigated using statistical parametric mapping. Participant mean PC-WUSPI scores were 20.3 +/- 26.3 points and varied from zero up to 104 points. No significant correlations were observed between kinetic or spatio-temporal parameters of wheelchair propulsion and shoulder pain. However, lower inter-cycle variability of scapular internal/external rotation was associated with greater levels of shoulder pain (r = 0.35, P = 0.03). Wheelchair users with moderate pain displayed significantly lower scapular kinematic variability compared to those with mild or no pain between 17 and 51% of the push phase for internal rotation, between 31-42% and 77-100% of the push phase for downward rotation and between 28-36% and 53-65% of the push phase for posterior tilt. Lower scapular variability displayed by wheelchair users with moderate shoulder pain may reflect a more uniform distribution of repeated subacromial tissue stress imposed by propulsion. This suggests that lower scapular kinematic variability during propulsion may contribute towards the development of chronic shoulder pain. (C) 2020 Elsevier Ltd. All rights reserved

    The longitudinal relationship between shoulder pain and altered wheelchair propulsion biomechanics of manual wheelchair users

    Get PDF
    The purpose of this study was to investigate the longitudinal association between within-subject changes in shoulder pain and alterations in wheelchair propulsion biomechanics in manual wheelchair users. Eighteen (age 33 ± 11 years) manual wheelchair users propelled their own daily living wheelchair at 1.11 m.s-1 for three minutes on a dual-roller ergometer during two laboratory visits (T1 and T2) between 4 and 6 months apart. Shoulder pain was assessed using the Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI). Between visits mean PC-WUSPI scores increased by 5.4 points and varied from - 13.5 to + 20.9 points. Of the eighteen participants, nine (50%) experienced increased shoulder pain, seven (39%) no change in pain, and two (11%) decreased pain. Increasing shoulder pain severity correlated with increased contact angle (r = 0.59, P = 0.010), thorax range of motion (r = 0.60, P = 0.009) and kinetic and kinematic variability. Additionally, increasing shoulder pain was associated with reductions in peak torque (r = -0.56, P = 0.016), peak glenohumeral abduction (r = -0.69, P = 0.002), peak scapular downward rotation (r = -0.68, P = 0.002), and range of motion in glenohumeral flexion/extension and scapular angles. Group comparisons revealed that these biomechanical alterations were exhibited by individuals who experienced increased shoulder pain, whereas, propulsion biomechanics of those with no change/decreased pain remained unaltered. These findings indicate that wheelchair users exhibit a protective short-term wheelchair propulsion biomechanical response to increases in shoulder pain which may temporarily help maintain functional independence

    PCV85 Cost-Effectiveness of Increasing Statin Adherence for Secondary Prevention in Community Pharmacies

    Get PDF

    Wheelchair rugby players maintain sprint performance but alter propulsion biomechanics after simulated match play

    Get PDF
    The study aimed to explore the influence of a sports-specific intermittent sprint protocol (ISP) on wheelchair sprint performance and the kinetics and kinematics of sprinting in elite wheelchair rugby (WR) players with and without spinal cord injury (SCI). Fifteen international WR players (age 30.3 ± 5.5 years) performed two 10-s sprints on a dual roller wheelchair ergometer before and immediately after an ISP consisting of four 16-min quarters. Physiological measurements (heart rate, blood lactate concentration, and rating of perceived exertion) were collected. Three-dimensional thorax and bilateral glenohumeral kinematics were quantified. Following the ISP, all physiological parameters significantly increased (p ≤ 0.027), but neither sprinting peak velocity nor distance traveled changed. Players propelled with significantly reduced thorax flexion and peak glenohumeral abduction during both the acceleration (both -5°) and maximal velocity phases (-6° and 8°, respectively) of sprinting post-ISP. Moreover, players exhibited significantly larger mean contact angles (+24°), contact angle asymmetries (+4%), and glenohumeral flexion asymmetries (+10%) during the acceleration phase of sprinting post-ISP. Players displayed greater glenohumeral abduction range of motion (+17°) and asymmetries (+20%) during the maximal velocity phase of sprinting post-ISP. Players with SCI (SCI, n = 7) significantly increased asymmetries in peak power (+6%) and glenohumeral abduction (+15%) during the acceleration phase post-ISP. Our data indicates that despite inducing physiological fatigue resulting from WR match play, players can maintain sprint performance by modifying how they propel their wheelchair. Increased asymmetry post-ISP was notable, which may be specific to impairment type and warrants further investigatio
    • …
    corecore