34 research outputs found

    Managing formalization to increase global team effectiveness and meaningfulness of work in multinational organizations

    Get PDF
    Global teams may help to integrate across locations, and yet, with formalized rules and procedures, responsiveness to those locations’ effectiveness, and the team members’ experiences of work as meaningful may suffer. We employ a mixed-methods approach to understand how the level and content of formalization can be managed to resolve these tensions in multinationals. In a sample of global teams from a large mining and resources organization operating across 44 countries, interviews, observations, and a quantitative 2-wave survey revealed a great deal of variability between teams in how formalization processes were enacted. Only those formalization processes that promoted knowledge sharing were instrumental in improving team effectiveness. Implementing rules and procedures in the set-up of the teams and projects, rather than during interactions, and utilizing protocols to help establish the global team as a source of identity increased this knowledge sharing. Finally, we found members’ personal need for structure moderated the effect of team formalization on how meaningful individuals found their work within the team. These findings have significant implications for theory and practice in multinational organizations

    The Joint Influence of Intra- and Inter-Team Learning Processes on Team Performance: A Constructive or Destructive Combination?

    Get PDF
    In order for teams to build a shared conception of their task, team learning is crucial. Benefits of intra-team learning have been demonstrated in numerous studies. However, teams do not operate in a vacuum, and interact with their environment to execute their tasks. Our knowledge of the added value of inter-team learning (team learning with external parties) is limited. Do both types of team learning compete over limited resources, or do they form a synergistic combination? We aim to shed light on the interplay between intra- and inter-team learning in relation to team performance, by including adaptive and transformative sub-processes of intra-team learning. A quantitative field study was conducted among 108 university teacher teams. The joint influence of intra- and inter-team learning as well as structural (task interdependence) and cultural (team efficacy) team characteristics on self-perceived and externally rated team performance were explored in a path model. The results showed that adaptive intra-team learning positively influenced self-perceived team performance, while transformative intra-team learning positively influenced externally rated team performance. Moreover, intra-team and inter-team learning were found to be both a constructive and a destructive combination. Adaptive intra-team learning combined with inter-team learning led to increased team performance, while transformative intra-team learning combined with inter-team learning hurt team performance. The findings demonstrate the importance of distinguishing between both the scope (intra- vs. inter-team) and the level (adaptive vs. transformative) of team learning in understanding team performance

    Development of copper based drugs, radiopharmaceuticals and medical materials

    Full text link

    Dispersion Properties of Explicit Finite Element Methods for Wave Propagation Modelling on Tetrahedral Meshes

    Get PDF
    We analyse the dispersion properties of two types of explicit finite element methods for modelling acoustic and elastic wave propagation on tetrahedral meshes, namely mass-lumped finite element methods and symmetric interior penalty discontinuous Galerkin methods, both combined with a suitable Lax–Wendroff time integration scheme. The dispersion properties are obtained semi-analytically using standard Fourier analysis. Based on the dispersion analysis, we give an indication of which method is the most efficient for a given accuracy, how many elements per wavelength are required for a given accuracy, and how sensitive the accuracy of the method is to poorly shaped elements.Applied Geophysics and Petrophysic
    corecore