4 research outputs found

    Modeling the morphodynamics of coastal responses to extreme events: what shape are we in?

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., & Warner, J. C. Modeling the morphodynamics of coastal responses to extreme events: what shape are we in? Annual Review of Marine Science, 14, (2022): 457–492, https://doi.org/10.1146/annurev-marine-032221-090215.This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.All authors except D.R. were partially supported by the IFMSIP project, funded by US Office of Naval Research grant PE 0601153N under contracts N00014-17-1-2459 (Deltares), N00014-18-1-2785 (University of Delaware), N0001419WX00733 (US Naval Research Laboratory, Monterey), N0001418WX01447 (US Naval Research Laboratory, Stennis Space Center), and N0001418IP00016 (US Geological Survey). C.R.S., C.A.H., T.S.K., and J.C.W. were supported by the US Geological Survey Coastal/Marine Hazards and Resources Program. A.v.D. and M.v.d.L. were supported by the Deltares Strategic Research project Quantifying Flood Hazards and Impacts. M.O. acknowledges support from National Science Foundation project OCE-1554892

    Optimizing Spectral Wave Estimates With Adjoint-Based Sensitivity Maps

    No full text
    A discrete numerical adjoint has recently been developed for the stochastic wave model SWAN. In the present study, this adjoint code is used to construct spectral sensitivity maps for two nearshore domains. The maps display the correlations of spectral energy levels throughout the domain with the observed energy levels at a selected location or region of interest (LOI/ROI), providing a full spectrum of values at all locations in the domain. We investigate the effectiveness of sensitivity maps based on significant wave height (H s ) in determining alternate offshore instrument deployment sites when a chosen nearshore location or region is inaccessible. Wave and bathymetry datasets are employed from one shallower, small-scale domain (Duck, NC) and one deeper, larger-scale domain (San Diego, CA). The effects of seasonal changes in wave climate, errors in bathymetry, and multiple assimilation points on sensitivity map shapes and model performance are investigated. Model accuracy is evaluated by comparing spectral statistics as well as with an RMS skill score, which estimates a mean model–data error across all spectral bins. Results indicate that data assimilation from identified high-sensitivity alternate locations consistently improves model performance at nearshore LOIs, while assimilation from low-sensitivity locations results in lesser or no improvement. Use of sub-sampled or alongshore-averaged bathymetry has a domain-specific effect on model performance when assimilating from a high-sensitivity alternate location. When multiple alternate assimilation locations are used from areas of lower sensitivity, model performance may be worse than with a single, high-sensitivity assimilation point

    Mixing and transport in estuaries and coastal waters a special issue in Estuarine Coastal and Shelf Science

    No full text
    Mixing and transport in the estuaries and coastal waters must be informed by advanced and up-to-date research to consider the underlying natural and anthropogenic effects on physical and biogeochemical processes. To that end a session was organized during the 2021 Coastal and Estuarine Research Federation conference entitled "Mixing and Transport in Estuaries and Coastal Waters". The focus of this session was to improve understanding through comprehensive studies associated with mixing and transport processes in estuaries and coastal waters based on observations, analytical models, laboratory experiments, and numerical models. This Special Issue (SI) 'Mixing and Transport in Estuaries and Coastal Waters' in 'Estuarine Coastal and Shelf Science' is an outcome of the talks presented at the conference session. The key research interests covered comprise of five themes: Estuarine dynamics, Wave-current-surge processes, Sediment dynamics, Plume dynamics, and Estuarine physical-biogeochemical processes. The articles contained in the SI represent the latest advances in mixing and transport in estuaries and coastal seas all over the world, as well as common methods including observations, remote sensing, and numerical modelling, a data framework is also used, which is the methodological highlight of this SI. While continued progress is still being made on understanding estuarine and coastal sea dynamics, the effects of these physical processes on biological and biogeochemical issues (i.e., larval transport and water quality dynamics) should also be considered in future studies
    corecore