1,424 research outputs found
Peer Group Status of Gender Dysphoric Children: A Sociometric Study
In this sociometric study, we aimed to investigate the social position of gender-referred children in a naturalistic environment. We used a peer nomination technique to examine their social position in the class and we specifically examined bullying and victimization of gender dysphoric children. A total of 28 children (14 boys and 14 girls), referred to a gender identity clinic, and their classmates (n = 495) were included (M age, 10.5 years). Results showed that the gender-referred children had a peer network of children of the opposite sex. Gender-referred boys had more nominations on peer acceptance from female classmates and less from male classmates as compared to other male classmates. Gender-referred girls were more accepted by male than by female classmates and these girls had significantly more male friends and less female friends. Male classmates rejected gender-referred boys more than other boys, whereas female classmates did not reject the gender-referred girls. For bullying and victimization, we did not find any significant differences between the gender-referred boys and their male classmates nor between the gender-referred girls and their female classmates. In sum, at elementary school age, the relationships of gender dysphoric children with opposite-sex children appeared to be better than with same-sex children. The social position of gender-referred boys was less favorable than that of gender-referred girls. However, the gender-referred children were not more often bullied than other children, despite their gender nonconforming behavior
Determining the Surface-To-Bulk Progression in the Normal-State Electronic Structure of Sr2RuO4 by Angle-Resolved Photoemission and Density Functional Theory
In search of the potential realization of novel normal-state phases on the
surface of Sr2RuO4 - those stemming from either topological bulk properties or
the interplay between spin-orbit coupling (SO) and the broken symmetry of the
surface - we revisit the electronic structure of the top-most layers by ARPES
with improved data quality as well as ab-initio LDA slab calculations. We find
that the current model of a single surface layer (\surd2x\surd2)R45{\deg}
reconstruction does not explain all detected features. The observed
depth-dependent signal degradation, together with the close quantitative
agreement with LDA+SO slab calculations based on the LEED-determined surface
crystal structure, reveal that (at a minimum) the sub-surface layer also
undergoes a similar although weaker reconstruction. This points to a
surface-to-bulk progression of the electronic states driven by structural
instabilities, with no evidence for Dirac and Rashba-type states or surface
magnetism.Comment: 4 pages, 4 figures, 1 table. Further information and PDF available
at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm
Evolving information systems: meeting the ever-changing environment
To meet the demands of organizations and their ever-changing environment, information systems are required which are able to evolve to the same extent as organizations do. Such a system has to support changes in all time-and application-dependent aspects. In this paper, requirements and a conceptual framework for evolving information systems are presented. This framework includes an architecture for such systems and a revision of the traditional notion of update. Based on this evolutionary notion of update (recording, correction and forgetting) a state transition-oriented model on three levels of abstraction (event level, recording level, correction level) is introduced. Examples are provided to illustrate the conceptual framework for evolving information systems
Na2IrO3 as a spin-orbit-assisted antiferromagnetic insulator with a 340 meV gap
We study Na2IrO3 by ARPES, optics, and band structure calculations in the
local-density approximation (LDA). The weak dispersion of the Ir 5d-t2g
manifold highlights the importance of structural distortions and spin-orbit
coupling (SO) in driving the system closer to a Mott transition. We detect an
insulating gap {\Delta}_gap = 340 meV which, at variance with a Slater-type
description, is already open at 300 K and does not show significant temperature
dependence even across T_N ~ 15 K. An LDA analysis with the inclusion of SO and
Coulomb repulsion U reveals that, while the prodromes of an underlying
insulating state are already found in LDA+SO, the correct gap magnitude can
only be reproduced by LDA+SO+U, with U = 3 eV. This establishes Na2IrO3 as a
novel type of Mott-like correlated insulator in which Coulomb and relativistic
effects have to be treated on an equal footing.Comment: Accepted in Physical Review Letters. Auxiliary and related material
can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm
Strong polarization-induced reduction of addition energies in single-molecule nanojunctions
We address polarization-induced renormalization of molecular levels in
solid-state based single-molecule transistors and focus on an organic conjugate
molecule where a surprisingly large reduction of the addition energy has been
observed. We have developed a scheme that combines a self-consistent solution
of a quantum chemical calculation with a realistic description of the screening
environment. Our results indeed show a large reduction, and we explain this to
be a consequence of both (a) a reduction of the electrostatic molecular
charging energy and (b) polarization induced level shifts of the HOMO and LUMO
levels. Finally, we calculate the charge stability diagram and explain at a
qualitative level general features observed experimentally.Comment: 9 pages, 5 figure
Rashba spin-splitting control at the surface of the topological insulator Bi2Se3
The electronic structure of Bi2Se3 is studied by angle-resolved photoemission
and density functional theory. We show that the instability of the surface
electronic properties, observed even in ultra-high-vacuum conditions, can be
overcome via in-situ potassium deposition. In addition to accurately setting
the carrier concentration, new Rashba-like spin-polarized states are induced,
with a tunable, reversible, and highly stable spin splitting. Ab-initio slab
calculations reveal that these Rashba state are derived from the 5QL
quantum-well states. While the K-induced potential gradient enhances the spin
splitting, this might be already present for pristine surfaces due to the
symmetry breaking of the vacuum-solid interface.Comment: A high-resolution version can be found at
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/BiSe_K.pd
- âŠ