950 research outputs found
Elusive electron-phonon coupling in quantitative analyses of the spectral function
We examine multiple techniques for extracting information from angle-resolved
photoemission spectroscopy (ARPES) data, and test them against simulated
spectral functions for electron-phonon coupling. We find that, in the
low-coupling regime, it is possible to extract self-energy and bare-band
parameters through a self-consistent Kramers-Kronig bare-band fitting routine.
We also show that the effective coupling parameters deduced from the
renormalization of quasiparticle mass, velocity, and spectral weight are
momentum dependent and, in general, distinct from the true microscopic
coupling; the latter is thus not readily accessible in the quasiparticle
dispersion revealed by ARPES.Comment: A high-resolution version can be found at
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/KKBF.pd
The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes
Watershed and global-scale nitrogen (N) budgets indicate that the majority of the N surplus in anthropogenic landscapes does not reach the coastal oceans. While there is general consensus that this \u27missing\u27 N either exits the landscape via denitrification or is retained within watersheds as nitrate or organic N, the relative magnitudes of these pools and fluxes are subject to considerable uncertainty. Our study, for the first time, provides direct, large-scale evidence of N accumulation in the root zones of agricultural soils that may account for much of the \u27missing N\u27 identified in mass balance studies. We analyzed long-term soil data (1957–2010) from 2069 sites throughout the Mississippi River Basin (MRB) to reveal N accumulation in cropland of 25–70 kg ha−1 yr−1, a total of 3.8 ± 1.8 Mt yr−1 at the watershed scale. We then developed a simple modeling framework to capture N depletion and accumulation dynamics under intensive agriculture. Using the model, we show that the observed accumulation of soil organic N (SON) in the MRB over a 30 year period (142 Tg N) would lead to a biogeochemical lag time of 35 years for 99% of legacy SON, even with complete cessation of fertilizer application. By demonstrating that agricultural soils can act as a net N sink, the present work makes a critical contribution towards the closing of watershed N budgets
A spectral function tour of electron-phonon coupling outside the Migdal limit
We simulate spectral functions for electron-phonon coupling in a filled band
system - far from the asymptotic limit often assumed where the phonon energy is
very small compared to the Fermi energy in a parabolic band and the Migdal
theorem predicting 1+lambda quasiparticle renormalizations is valid. These
spectral functions are examined over a wide range of parameter space through
techniques often used in angle-resolved photoemission spectroscopy (ARPES).
Analyzing over 1200 simulations we consider variations of the microscopic
coupling strength, phonon energy and dimensionality for two models: a
momentum-independent Holstein model, and momentum-dependent coupling to a
breathing mode phonon. In this limit we find that any `effective coupling',
lambda_eff, inferred from the quasiparticle renormalizations differs from the
microscopic dimensionless coupling characterizing these Hamiltonians, lambda,
and could drastically either over- or under-estimate it depending on the
particular parameters and model. In contrast, we show that perturbation theory
retains good predictive power for low coupling and small momenta, and that the
momentum-dependence of the self-energy can be revealed via the relationship
between velocity renormalization and quasiparticle strength. Additionally we
find that (although not strictly valid) it is often possible to infer the
self-energy and bare electronic structure through a self-consistent
Kramers-Kronig bare-band fitting; and also that through lineshape alone, when
Lorentzian, it is possible to reliably extract the shape of the imaginary part
of a momentum-dependent self-energy without reference to the bare-band.Comment: 15 pages, 11 figures. High resolution available here:
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/sf_tour.pd
Na2IrO3 as a spin-orbit-assisted antiferromagnetic insulator with a 340 meV gap
We study Na2IrO3 by ARPES, optics, and band structure calculations in the
local-density approximation (LDA). The weak dispersion of the Ir 5d-t2g
manifold highlights the importance of structural distortions and spin-orbit
coupling (SO) in driving the system closer to a Mott transition. We detect an
insulating gap {\Delta}_gap = 340 meV which, at variance with a Slater-type
description, is already open at 300 K and does not show significant temperature
dependence even across T_N ~ 15 K. An LDA analysis with the inclusion of SO and
Coulomb repulsion U reveals that, while the prodromes of an underlying
insulating state are already found in LDA+SO, the correct gap magnitude can
only be reproduced by LDA+SO+U, with U = 3 eV. This establishes Na2IrO3 as a
novel type of Mott-like correlated insulator in which Coulomb and relativistic
effects have to be treated on an equal footing.Comment: Accepted in Physical Review Letters. Auxiliary and related material
can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm
Determining the Surface-To-Bulk Progression in the Normal-State Electronic Structure of Sr2RuO4 by Angle-Resolved Photoemission and Density Functional Theory
In search of the potential realization of novel normal-state phases on the
surface of Sr2RuO4 - those stemming from either topological bulk properties or
the interplay between spin-orbit coupling (SO) and the broken symmetry of the
surface - we revisit the electronic structure of the top-most layers by ARPES
with improved data quality as well as ab-initio LDA slab calculations. We find
that the current model of a single surface layer (\surd2x\surd2)R45{\deg}
reconstruction does not explain all detected features. The observed
depth-dependent signal degradation, together with the close quantitative
agreement with LDA+SO slab calculations based on the LEED-determined surface
crystal structure, reveal that (at a minimum) the sub-surface layer also
undergoes a similar although weaker reconstruction. This points to a
surface-to-bulk progression of the electronic states driven by structural
instabilities, with no evidence for Dirac and Rashba-type states or surface
magnetism.Comment: 4 pages, 4 figures, 1 table. Further information and PDF available
at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm
Rashba spin-splitting control at the surface of the topological insulator Bi2Se3
The electronic structure of Bi2Se3 is studied by angle-resolved photoemission
and density functional theory. We show that the instability of the surface
electronic properties, observed even in ultra-high-vacuum conditions, can be
overcome via in-situ potassium deposition. In addition to accurately setting
the carrier concentration, new Rashba-like spin-polarized states are induced,
with a tunable, reversible, and highly stable spin splitting. Ab-initio slab
calculations reveal that these Rashba state are derived from the 5QL
quantum-well states. While the K-induced potential gradient enhances the spin
splitting, this might be already present for pristine surfaces due to the
symmetry breaking of the vacuum-solid interface.Comment: A high-resolution version can be found at
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/BiSe_K.pd
- …