682 research outputs found

    A dynamic method for charging-up calculations: the case of GEM

    Full text link
    The simulation of Micro Pattern Gaseous Detectors (MPGDs) signal response is an important and powerful tool for the design and optimization of such detectors. However, several attempts to simulate exactly the effective charge gain have not been completely successful. Namely, the gain stability over time has not been fully understood. Charging-up of the insulator surfaces have been pointed as one of the responsible for the difference between experimental and Monte Carlo results. This work describes two iterative methods to simulate the charging-up in one MPGD device, the Gas Electron Multiplier (GEM). The first method uses a constant step for avalanches time evolution, very detailed, but slower to compute. The second method uses a dynamic step that improves the computing time. Good agreement between both methods was reached. Despite of comparison with experimental results shows that charging-up plays an important role in detectors operation, should not be the only responsible for the difference between simulated and measured effective gain, but explains the time evolution in the effective gain.Comment: Minor changes in grammatical statements and inclusion of some important information about experimental setup at section "Comparison with experimental results

    Simulation of gain stability of THGEM gas-avalanche particle detectors

    Full text link
    Charging-up processes affecting gain stability in Thick Gas Electron Multipliers (THGEM) were studied with a dedicated simulation toolkit. Integrated with Garfield++, it provides an effective platform for systematic phenomenological studies of charging-up processes in MPGD detectors. We describe the simulation tool and the fine-tuning of the step-size required for the algorithm convergence, in relation to physical parameters. Simulation results of gain stability over time in THGEM detectors are presented, exploring the role of electrode-thickness and applied voltage on its evolution. The results show that the total amount of irradiated charge through electrode's hole needed for reaching gain stabilization is in the range of tens to hundreds of pC, depending on the detector geometry and operational voltage. These results are in agreement with experimental observations presented previously

    Charge Transfer and Charge Broadening of GEM Structures in High Magnetic Fields

    Full text link
    We report on measurements of charge transfer in GEM structures in high magnetic fields. These were performed in the framework of the R&D work for a Time Projection Chamber at a future Linear Collider. A small test chamber has been installed into the aperture of a superconducting magnet with the GEM structures mounted perpendicular to the B field direction. The charge transfer is derived from the electrical currents monitored during irradiation with an 55{}^{55}Fe source. No severe loss of primary ionisation charge is observed, but an improved ion feedback suppression is achieved for high magnetic fields. Additionally, the width of the charge cloud released by individual 55{}^{55}Fe photons is measured using a finely segmented strip readout after the triple GEM structure. Charge widths between 0.3 and 0.5 mm RMS are observed, which originate from the charge broadening inside the GEM readout. This charge broadening is only partly suppressed at high magnetic fields.Comment: 11 pages, 9 figure

    New approach to 3D electrostatic calculations for micro-pattern detectors

    Get PDF
    We demonstrate practically approximation-free electrostatic calculations of micromesh detectors that can be extended to any other type of micropattern detectors. Using newly developed Boundary Element Method called Robin Hood Method we can easily handle objects with huge number of boundary elements (hundreds of thousands) without any compromise in numerical accuracy. In this paper we show how such calculations can be applied to Micromegas detectors by comparing electron transparencies and gains for four different types of meshes. We demonstrate inclusion of dielectric material by calculating the electric field around different types of dielectric spacers

    Simulation of VUV electroluminescence in micropattern gaseous detectors: the case of GEM and MHSP

    Full text link
    Electroluminescence produced during avalanche development in gaseous avalanche detectors is an useful information for triggering, calorimetry and tracking in gaseous detectors. Noble gases present high electroluminescence yields, emitting mainly in the VUV region. The photons can provide signal readout if appropriate photosensors are used. Micropattern gaseous detectors are good candidates for signal amplification in high background and/or low rate experiments due to their high electroluminescence yields and radiopurity. In this work, the VUV light responses of the Gas Electron Multiplier and of the Micro-Hole Strip Plate, working with pure xenon, are simulated and studied in detail using a new and versatile C++ toolkit. It is shown that the solid angle subtended by a photosensor placed below the microstructures depends on the operating conditions. The obtained absolute EL yields, determined for different gas pressures and as functions of the applied voltage, are compared with those determined experimentally.Comment: Accepted for publication in Journal of Instrumentatio

    Modelling the behaviour of microbulk Micromegas in Xenon/trimethylamine gas

    Get PDF
    We model the response of a state of the art micro-hole single-stage charge amplication device (`microbulk' Micromegas) in a gaseous atmosphere consisting of Xenon/trimethylamine at various concentrations and pressures. The amplifying structure, made with photo-lithographic techniques similar to those followed in the fabrication of gas electron multipliers (GEMs), consisted of a 100 um-side equilateral-triangle pattern with 50 um-diameter holes placed at its vertexes. Once the primary electrons are guided into the holes by virtue of an optimized field configuration, avalanches develop along the 50 um-height channels etched out of the original doubly copper-clad polyimide foil. In order to properly account for the strong field gradients at the holes' entrance as well as for the fluctuations of the avalanche process (that ultimately determine the achievable energy resolution), we abandoned the hydrodynamic framework, resorting to a purely microscopic description of the electron trajectories as obtained from elementary cross-sections. We show that achieving a satisfactory description needs additional assumptions about atom-molecule (Penning) transfer reactions and charge recombination to be made

    Charge Transfer Properties Through Graphene Layers in Gas Detectors

    Full text link
    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.Comment: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference with the 21st Symposium on Room-Temperature Semiconductor X-Ray and Gamma-Ray Detectors, 4 pages, 8 figure

    Volumetric absorptive microsampling and dried blood spot microsampling vs. conventional venous sampling for tacrolimus trough concentration monitoring

    Get PDF
    Objectives: Monitoring tacrolimus blood concentrations is important for preventing allograft rejection in transplant patients. Our hospital offers dried blood spot (DBS) sampling, giving patients the opportunity to sample a drop of blood from a fingerprick at home, which can be sent to the laboratory by mail. In this study, both a volumetric absorptive microsampling (VAMS) device and DBS sampling were compared to venous whole blood (WB) sampling. Methods: A total of 130 matched fingerprick VAMS, fingerprick DBS and venous WB samples were obtained from 107 different kidney transplant patients by trained phlebotomists for method comparison using Passing-Bablok regression. Bias was assessed using Bland-Altman. A multidisciplinary team pre-defined an acceptance limit requiring ï80% of all matched samples within 15% of the mean of both samples. Sampling quality was evaluated for both VAMS and DBS samples. Results: 32.3% of the VAMS samples and 6.2% of the DBS samples were of insufficient quality, leading to 88 matched samples fit for analysis. Passing-Bablok regression showed a significant difference between VAMS and WB, with a slope of 0.88 (95% CI 0.81-0.97) but not for DBS (slope 1.00; 95% CI 0.95-1.04). Both VAMS (after correction for the slope) and DBS showed no significant bias in Bland-Altman analysis. For VAMS and DBS, the acceptance limit was met for 83.0% and 96.6% of the samples, respectively. Conclusions: VAMS sampling can replace WB sampling for tacrolimus trough concentration monitoring, but VAMS sampling is currently inferior to DBS sampling, both regarding sample quality and agreement with WB tacrolimus concentrations. c 2020 Daan J. Touw et al., published by De Gruyter
    corecore