8,524 research outputs found

    An Attempt to Detect the Galactic Bulge at 12 microns with IRAS

    Full text link
    Surface brightness maps at 12 microns, derived from observations with the Infrared Astronomical Satellite (IRAS), are used to estimate the integrated flux at this wavelength from the Galactic bulge as a function of galactic latitude along the minor axis. A simple model was used to remove Galactic disk emission (e.g. unresolved stars and dust) from the IRAS measurements. The resulting estimates are compared with predictions for the 12 micron bulge surface brightness based on observations of complete samples of optically identified M giants in several minor axis bulge fields. No evidence is found for any significant component of 12m emission in the bulge other than that expected from the optically identified M star sample plus normal, lower luminosity stars. Known large amplitude variables and point sources from the IRAS catalogue contribute only a small fraction to the total 12 micron flux.Comment: Accepted for publication in ApJ; 13 pages of text including tables in MS WORD97 generated postscript; 3 figures in postscript by Sigma Plo

    Continuous-flow IRMS technique for determining the 17O excess of CO2 using complete oxygen isotope exchange with cerium oxide

    Get PDF
    This paper presents an analytical system for analysis of all single substituted isotopologues (<sup>12</sup>C<sup>16</sup>O<sup>17</sup>O, <sup>12</sup>C<sup>16</sup>O<sup>18</sup>O, <sup>13</sup>C<sup>16</sup>O<sup>16</sup>O) in nanomolar quantities of CO<sub>2</sub> extracted from stratospheric air samples. CO<sub>2</sub> is separated from bulk air by gas chromatography and CO<sub>2</sub> isotope ratio measurements (ion masses 45 / 44 and 46 / 44) are performed using isotope ratio mass spectrometry (IRMS). The <sup>17</sup>O excess (Δ<sup>17</sup>O) is derived from isotope measurements on two different CO<sub>2</sub> aliquots: unmodified CO<sub>2</sub> and CO<sub>2</sub> after complete oxygen isotope exchange with cerium oxide (CeO<sub>2</sub>) at 700 °C. Thus, a single measurement of Δ<sup>17</sup>O requires two injections of 1 mL of air with a CO<sub>2</sub> mole fraction of 390 ÎŒmol mol<sup>−1</sup> at 293 K and 1 bar pressure (corresponding to 16 nmol CO<sub>2</sub> each). The required sample size (including flushing) is 2.7 mL of air. A single analysis (one pair of injections) takes 15 minutes. The analytical system is fully automated for unattended measurements over several days. The standard deviation of the <sup>17</sup>O excess analysis is 1.7&permil;. Multiple measurements on an air sample reduce the measurement uncertainty, as expected for the statistical standard error. Thus, the uncertainty for a group of 10 measurements is 0.58&permil; for &Delta; <sup>17</sup>O in 2.5 h of analysis. 100 repeat analyses of one air sample decrease the standard error to 0.20&permil;. The instrument performance was demonstrated by measuring CO<sub>2</sub> on stratospheric air samples obtained during the EU project RECONCILE with the high-altitude aircraft Geophysica. The precision for RECONCILE data is 0.03&permil; (1&sigma;) for ÎŽ<sup>13</sup>C, 0.07&permil; (1&sigma;) for ÎŽ<sup>18</sup>O and 0.55&permil; (1&sigma;) for &delta;<sup>17</sup>O for a sample of 10 measurements. This is sufficient to examine stratospheric enrichments, which at altitude 33 km go up to 12&permil; for &delta;<sup>17</sup>O and up to 8&permil; for ÎŽ<sup>18</sup>O with respect to tropospheric CO<sub>2</sub> : &delta;<sup>17</sup>O ~ 21&permil; Vienna Standard Mean Ocean Water (VSMOW), ÎŽ<sup>18</sup>O ~ 41&permil; VSMOW (LĂ€mmerzahl et al., 2002). The samples measured with our analytical technique agree with available data for stratospheric CO<sub>2</sub>

    Mass-luminosity relation and pulsational properties of Wolf-Rayet stars

    Full text link
    Evolution of Population I stars with initial masses from 70M_\odot to 130M_\odot is considered under various assumptions on the mass loss rate \dot M. The mass-luminosity relation of W-R stars is shown to be most sensitive to the mass loss rate during the helium burning phase \dot M_{3\alpha}. Together with the mass-luminosity relation obtained for all evolutionary sequences several more exact relations are determined for the constant ratio f_{3\alpha}=\dot M/\dot M_{3\alpha} with 0.5 \le f_{3\alpha} \le 3. Evolutionary models of W-R stars were used as initial conditions in hydrodynamic computations of radial nonlinear stellar oscillations. The oscillation amplitude is larger in W-R stars with smaller initial mass or with lower mass loss rate due to higher surface abundances of carbon and oxygen. In the evolving W-R star the oscillation amplitude decreases with decreasing stellar mass M and for M < 10M_\odot the sufficiently small nonlinear effects allow us to calculate the integral of the mechanical work W done over the pulsation cycle in each mass zone of the hydrodynamical model. The only positive maximum on the radial dependence of W is in the layers with temperature of T\sim 2e5K where oscillations are excited by the iron Z--bump kappa-mechanism. Radial oscillations of W-R stars with mass of M > 10M_\odot are shown to be also excited by the kappa-mechanism but the instability driving zone is at the bottom of the envelope and pulsation motions exist in the form of nonlinear running waves propagating outward from the inner layers of the envelope.Comment: 15 pages, 10 figures, submitted to Astronomy Letter

    Use of tracers to determine the dynamic nature of organic matter, The

    Get PDF
    Includes bibliographical references (pages 31-43).Early experiments with 13C, 14C and 15N established the high rate of internal cycling of soil organic matter and reintroduced the concept of an active and passive phase in soil humus turnover. Later studies confirmed non-tracer investigations indicating that the percent decomposition of added materials is relatively independent of the rates of addition but dependent on its form and composition. The initial decomposition rate, plus the stabilization of microbial products in soil, must be taken into account when interpreting degradation of 14C enriched straw, roots, microbial tissue and specific components or in carbon dating naturally occurring 14C. Where initial decomposition data could be described by first order kinetics we calculated decay rate constants with and without the consideration of biosynthesis. Decay rates for laboratory systems were twice those for tropical field soils and eight times those calculated for temperate climates. The data were used in a model incorporating the concepts of microbial biosynthesis and recalcitrant and decomposable soil organic fractions which can both be physically protected. This realistically described the behaviour of soil-C in a Canadian grassland before and after cultivation

    Organic carbon dynamics in grassland soils. 1. Background information and computer simulation

    Get PDF
    Includes bibliographical references (pages 199-201).The decomposition rates of 14C-labelled plant residues in different parts of the world were characterized and mathematically simulated. The easily decomposable materials, cellulose and hemicellulose, were described as being decomposed directly by the soil biomass; the lignin fraction of aboveground residues and the resistant portion of the roots entered a decomposable native soil organic matter. Here it could be decomposed by the soil biomass or react with other soil constituents in the formation of more recalcitrant soil organic matter. The transformation rates were considered to be independent of biomass size (first–order). Data from 14C plant residue incorporation studies which yielded net decomposition rates of added materials and from carbon dating of the recalcitrant soil organic matter were transformed to gross decomposition rate constants for three soil depths. The model adequately described soil organic matter transformations under native grassland and the effect of cultivation on organic matter levels. Correction for microbial growth and moisture and temperature variations showed that the rate of wheat straw decomposition, based on a full year in the field in southern Saskatchewan, was 0.05 that under optimal laboratory conditions. The relative decay rates for plant residues during the summer months of the North American Great Plains was 0.1 times that of the laboratory. Comparison with data from other parts of the world showed an annual relative rate of 0.12 for straw decomposition in England, whereas gross decomposition rates in Nigeria were 0.5 those of laboratory rates. Both the decomposable and recalcitrant organic matter were found to be affected by the extent of physical protection within the soil. The extent of protection was simulated and compared to data from experimental studies on the persistence of 14C-labelled amino acids in soil. The extent of protection influenced the steady-state levels of soil carbon upon cultivation more than did the original decomposition rates of the plant residues

    Infrared Classification of Galactic Objects

    Get PDF
    Unbiased analysis shows that IRAS data reliably differentiate between the early and late stages of stellar evolution because objects at these stages clearly segregate in infrared color-color diagrams. Structure in these diagrams is primarily controlled by the density distribution of circumstellar dust. The density profile around older objects is the steepest, declining as r−2r^{-2}, while young objects have profiles that vary as r−3/2r^{-3/2} and flatter. The different density profiles reflect the different dynamics that govern the different environments. Our analysis also shows that high mass star formation is strongly concentrated within \about 5 kpc around the Galactic center, in support of other studies.Comment: 11 pages, 3 Postscript figures (included), uses aaspp4.sty. To appear in Astrophysical Journal Letter

    Surface defreezing of glasses

    Full text link
    A glass surface may still flow below the bulk glass transition temperature, where the underlying bulk is frozen. Assuming the existence at T=T* of a bulk thermodynamical glass transition, we show that the glass-vapor interface is generally wetted by a liquid layer of thickness ~ -ln(T*-T) when T--> T*. Contrary to standard surface melting of crystals however, the integrated value of the diffusivity across the interface remains finite for T-->T*. Difference in shape induced by bulk and by surface flow is discussed as a possible means of experimental detection of surface defreezing.Comment: five pages, three figure
    • 

    corecore