2 research outputs found

    MonkeyDB: effectively testing correctness under weak isolation levels

    Get PDF
    Modern applications, such as social networking systems and e-commerce platforms are centered around using large-scale storage systems for storing and retrieving data. In the presence of concurrent accesses, these storage systems trade off isolation for performance. The weaker the isolation level, the more behaviors a storage system is allowed to exhibit and it is up to the developer to ensure that their application can tolerate those behaviors. However, these weak behaviors only occur rarely in practice and outside the control of the application, making it difficult for developers to test the robustness of their code against weak isolation levels. This paper presents MonkeyDB, a mock storage system for testing storage-backed applications. MonkeyDB supports a key-value interface as well as SQL queries under multiple isolation levels. It uses a logical specification of the isolation level to compute, on a read operation, the set of all possible return values. MonkeyDB then returns a value randomly from this set. We show that MonkeyDB provides good coverage of weak behaviors, which is complete in the limit. We test a variety of applications for assertions that fail only under weak isolation. MonkeyDB is able to break each of those assertions in a small number of attempts. © 2021 Owner/Author

    Nekara: Generalized Concurrency Testing

    No full text
    Testing concurrent systems remains an uncomfortable problem for developers. The common industrial practice is to stress-test a system against large workloads, with the hope of triggering enough corner-case interleavings that reveal bugs. However, stress testing is often inefficient and its ability to get coverage of interleavings is unclear. In reaction, the research community has proposed the idea of systematic testing, where a tool takes over the scheduling of concurrent actions so that it can perform an algorithmic search over the space of interleavings.We present an experience paper on the application of systematic testing to several case studies. We separate the algorithmic advancements in prior work (on searching the large space of interleavings) from the engineering of their tools. The latter was unsatisfactory; often the tools were limited to a small domain, hard to maintain, and hard to extend to other domains. We designed Nekara, an open-source cross-platform library for easily building custom systematic testing solutions.We show that (1) Nekara can effectively encapsulate state-of-the-art exploration algorithms by evaluating on prior bench-marks, and (2) Nekara can be applied to a wide variety of scenarios, including existing open-source systems as well as production distributed services of Microsoft Azure. Nekara was easy to use, improved testing, and found multiple new bugs. © 2021 IEEE
    corecore