
132

MonkeyDB: Effectively Testing Correctness under Weak

Isolation Levels

RANADEEP BISWAS, Informal Systems, France

DIPTANSHU KAKWANI,Microsoft, India

JYOTHI VEDURADA, IIT Hyderabad, India

CONSTANTIN ENEA, IRIF, University of Paris & CNRS, France

AKASH LAL,Microsoft Research, India

Modern applications, such as social networking systems and e-commerce platforms are centered around using

large-scale storage systems for storing and retrieving data. In the presence of concurrent accesses, these

storage systems trade off isolation for performance. The weaker the isolation level, the more behaviors a

storage system is allowed to exhibit and it is up to the developer to ensure that their application can tolerate

those behaviors. However, these weak behaviors only occur rarely in practice and outside the control of the

application, making it difficult for developers to test the robustness of their code against weak isolation levels.

This paper presents MonkeyDB, a mock storage system for testing storage-backed applications. MonkeyDB

supports a key-value interface as well as SQL queries under multiple isolation levels. It uses a logical specifica-

tion of the isolation level to compute, on a read operation, the set of all possible return values. MonkeyDB

then returns a value randomly from this set. We show that MonkeyDB provides good coverage of weak

behaviors, which is complete in the limit. We test a variety of applications for assertions that fail only under

weak isolation. MonkeyDB is able to break each of those assertions in a small number of attempts.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Theory of com-

putation→ Parallel computing models.

Additional Key Words and Phrases: Applications of Storage Systems, Transactional Databases, Weak Isolation

Levels, Testing

ACM Reference Format:

Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal. 2021. MonkeyDB:

Effectively Testing Correctness under Weak Isolation Levels. Proc. ACM Program. Lang. 5, OOPSLA, Article 132

(October 2021), 27 pages. https://doi.org/10.1145/3485546

1 INTRODUCTION

Data storage is no longer about writing data to a single disk with a single point of access. Modern
applications require not just data reliability, but also high-throughput concurrent accesses. Appli-
cations concerning supply chains, banking, etc. use traditional relational databases for storing and
processing data, whereas applications such as social networking software and e-commerce plat-
forms use cloud-based storage systems (such as Azure Cosmos DB [Paz 2018], Amazon DynamoDB
[DeCandia et al. 2007], Facebook TAO [Bronson et al. 2013], etc.). We use the term storage system

in this paper to refer to any such database system or service.

Authors’ addresses: Ranadeep Biswas, Informal Systems, France, ranadeep@informal.systems; Diptanshu Kakwani,Microsoft,

India, dkakwani@microsoft.com; Jyothi Vedurada, IIT Hyderabad, India, jyothiv@cse.iith.ac.in; Constantin Enea, IRIF,

University of Paris & CNRS, France, cenea@irif.fr; Akash Lal, Microsoft Research, India, akashl@microsoft.com.

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART132

https://doi.org/10.1145/3485546

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485546
https://doi.org/10.1145/3485546

132:2 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

// Append item to cart

AddItem(item i, userId) {

begin()

key = "cart:" + userId

cart = read(key)

cart.append(i)

write(key, cart)

commit()

}

// Fetch cart and delete item

DeleteItem(item i, userId) {

begin()

key = "cart:" + userId

cart = read(key)

cart.remove(i)

write(key, cart)

commit()

}

Initial state

write (cart:𝑢, {.. 𝐼 ..})

read (cart:𝑢, {.. 𝐼 ..})

write (cart:𝑢, {.. 𝐼 , 𝐼 ..})

AddItem

read (cart:𝑢, {.. 𝐼 ..})

write (cart:𝑢, {.. ..})

DeleteItem

read (cart:𝑢, {.. ..})

read(cart:𝑢, {.. 𝐼 , 𝐼 .})

po po

wr wr

so

wr

wr

Fig. 1. A simple shopping cart service.

Providing high-throughput processing, unfortunately, comes at an unavoidable cost of weakening
the guarantees offered to users. Concurrently-connected clients may end up observing different
views of the same data. These łanomaliesž can be prevented by using a strong isolation level such
as serializability [Papadimitriou 1979], which essentially offers a single view of the data. However,
serializability requires expensive synchronization and incurs a high performance cost. As a conse-
quence, most storage systems use weaker isolation levels, such as Causal Consistency [Akkoorath
and Bieniusa 2016; Lamport 1978; Lloyd et al. 2011], Snapshot Isolation [Berenson et al. 1995],
Read Committed [Berenson et al. 1995], etc. for better performance. In a recent survey of database
administrators [Pavlo 2017], 86% of the participants responded that most or all of the transactions
in their databases execute at Read Committed isolation level.
A weaker isolation level allows for more possible behaviors than stronger isolation levels. It is

up to the developers then to ensure that their application can tolerate this larger set of behaviors.
Unfortunately, weak isolation levels are hard to understand or reason about [Adya 1999; Brutschy
et al. 2017] and resulting application bugs can cause loss of business [Warszawski and Bailis 2017].
Consider a simple shopping cart application, inspired from Sivaramakrishnan et al. [2015], that
stores a per-client shopping cart in a key-value store (key is the client ID and value is a multi-set of
items). Figure 1 shows procedures for adding an item to the cart (AddItem) and deleting all instances
of an item from the cart (DeleteItem). Each procedure executes in a transaction, represented by the
calls to begin and commit. Suppose that initially, a user𝑢 has a single instance of item 𝐼 in their cart.
Then the user connects to the application via two different sessions (for instance, via two browser
windows), adds 𝐼 in one session (AddItem(𝐼, 𝑢)) and deletes 𝐼 in the other session (DeleteItem(𝐼,
𝑢)). With serializability, the cart can either be left in the state {𝐼 } (delete happened first, followed
by the add) or ∅ (delete happened second). However, with Causal Consistency (or Read Committed),
it is possible that with two sequential reads of the shopping cart, the cart is empty in the first read
(signaling that the delete has succeeded), but there are two instances of 𝐼 in the second read! Such
anomalies, of deleted items reappearing, have been noted in previous work [DeCandia et al. 2007].

Testing storage-backed applications. This paper addresses the problem of testing code for correct-
ness against weak behaviors: a developer should be able to write a test that runs their application
and then asserts for correct behavior. The main difficulty with testing today is getting coverage of
weak behaviors. Running against an actual production storage system is very likely to only result

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:3

in serializable behaviors because of their optimized implementation. For instance, only 0.0004%
of all reads performed on Facebook’s TAO storage system were not serializable [Lu et al. 2015].
Emulators, offered by cloud providers for local development, on the other hand, do not support
weaker isolation levels at all [Microsoft 2020]. Another option, possible when the storage system
is available open-source, is to set it up with a tool like Jepsen [Jepsen 2020] to inject noise (bring
down replicas or delay packets on the network). This approach is unable to provide good coverage
at the level of client operations [Rahmani et al. 2019] (more details in ğ8). Another line of work has
focussed on finding anomalies by identifying non-serializable behavior (ğ10). Anomalies, however,
do not always correspond to bugs [Brutschy et al. 2018; Gan et al. 2020]; they may either not
be important (e.g., gathering statistics in a non-serializable fashion may not impact application
correctness) or may already be handled by the application (e.g., checking and deleting duplicate
items).
We present MonkeyDB, a mock in-memory storage system meant for testing correctness of

storage-backed applications. MonkeyDB supports common APIs for accessing data (key-value up-
dates, as well as SQL queries), making it an easy substitute for an actual storage system. MonkeyDB
can be configured with one of several isolation levels. On a read operation, MonkeyDB computes
the set of all possible return values allowed under the chosen isolation level, and randomly returns
one of them. The developer can then simply execute their test multiple times to get coverage
of possible weak behaviors. For the program in Figure 1, we can write a test asserting that two
sequential reads cannot return empty-cart followed by {𝐼 , 𝐼 }. Executing this test against MonkeyDB
(with Read Committed) requires only 20 runs (on average) before the assertion fails. On the other
hand, the test does not fail when using MySQL with Read Committed, even after 100K runs.
Testing, as opposed to static analysis or program verification, is still the most widely accepted

method for ensuring correctness. MonkeyDB can work with any application without modification,
neither does it require source access. A developer simply links their tests to run MonkeyDB instead
of the production storage system. Our evaluation shows that using MonkeyDB, even with the
simple strategy of randomly returning a valid read value, is able to break all invalid assertions,
significantly out-performing any other testing solution.

Design of MonkeyDB. MonkeyDB does not rely on stress generation, fault injection, or data
replication. Rather, it works directly with a formalization of the given isolation level in order to
compute allowed return values.

The theory behind MonkeyDB builds on the axiomatic definitions of isolation levels introduced
by Biswas and Enea [2019a]. These definitions use logical constraints (called axioms) to characterize
the set of executions of a key-value store that conform to a particular isolation level (we discuss
SQL queries later). These constraints refer to a specific set of relations between events/transactions
in an execution that describe control-flow or data-flow dependencies: a program order po between
events in the same transaction, a session order so between transactions in the same session1, and a
write-read wr (read-from) relation that associates each read event with a transaction that writes
the value returned by the read. These relations along with the events (also called operations) in an
execution are called a history. The history corresponding to the shopping cart anomaly explained
above is given at the bottom of Figure 1. Read operations include the read value, and boxes group
events from the same transaction. A history describes only the interaction with the key-value store,
omitting application-side events (e.g., computing the value to be written to a key).

While the axiomatic formalization was already done in prior work, several enhancements were
required to realize MonkeyDB. MonkeyDB implements a centralized operational semantics for key-
value stores, which is based on these axiomatic definitions. Transactions are executed serially, one

1A session is a sequential interface to the storage system. It corresponds to what is also called a connection.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

132:4 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

after another, the concurrency being simulated during the handling of read events. This semantics
maintains a history that contains all the past events (from all transactions/sessions), and write
events are simply added to the history. The value returned by a read event is established based on
a non-deterministic choice of a write-read dependency (concerning this read event) that satisfies
the axioms of the considered isolation level. Depending on the weakness of the isolation level,
this makes it possible to return values written in arbitrarily łoldž transactions, and simulate any
concurrent behavior. For instance, the history in Figure 1 can be obtained by executing AddItem,
DeleteItem, and then the two reads (serially). The read in DeleteItem can take its value from the
initial state and łignorež the previously executed AddItem, because the obtained history validates
the axioms of Causal Consistency (or Read Committed). The same happens for the two later reads in
the same session, the first one being able to read from DeleteItem and the second one from AddItem.
We also preserve commit-order constraints across read operations in order to incrementally deal
with a live history.

We formally prove that this semantics does indeed simulate any concurrent behavior, by showing
that it is equivalent to a semantics where transactions are allowed to interleave. In comparison
with concrete implementations, this semantics makes it possible to handle a wide range of isolation
levels in a uniform way. It only has two sources of non-determinism: the order in which entire
transactions are submitted, and the choice of write-read dependencies in read events. This enables
better coverage of possible behaviors, the penalty in performance not being an issue in safety
testing workloads which are usually small (see our evaluation).
We also extend our semantics to cover SQL queries as well, by compiling SQL queries down to

transactions with multiple key-value reads/writes. A table in a relational database is represented
using a set of primary key values (identifying uniquely the set of rows) and a set of keys, one for each
cell in the table. The set of primary key values is represented using a set of Boolean key-value pairs
that simulate its characteristic function (adding or removing an element corresponds to updating
one of these keys to true or false). Then, SQL queries are compiled to read or write accesses to
the keys representing a table. For instance, a SELECT query that retrieves the set of rows in a table
that satisfy a WHERE condition is compiled to (1) reading Boolean keys to identify the primary key
values of the rows contained in the table, (2) reading keys that represent columns used in the WHERE
condition, and (3) reading all the keys that represent cells in a row satisfying the WHERE condition.
This rewriting contains the minimal set of accesses to the cells of a table that are needed to ensure
the conventional specification of SQL. It makes it possible to łexportž formalizations of key-value
store isolation levels to SQL transactions.

Contributions. This paper makes the following contributions:

• We define an operational semantics, based on the axiomatic definitions introduced by Biswas
and Enea [2019a], for key-value stores under various isolation levels. We show that our
semantics simulates all concurrent behaviors with executions where transactions execute
serially (ğ4).

• We broaden the scope of the key-value store semantics to SQL transactions using a compiler
that rewrites SQL queries to key-value accesses (ğ5),

• The operational semantics and the SQL compiler are implemented in a tool called MonkeyDB
(ğ6). It randomly resolves possible choices to provide coverage of weak behaviors. It supports
both a key-value interface as well as SQL, making it readily compatible with any storage-
backed application.

• We present an evaluation of MonkeyDB on several applications, including a series of micro-
benchmarks inspired from real applications (ğ7), as well as the well-known OLTPBench
[Difallah et al. 2013] that is the standard for evaluating databases on online transaction

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:5

𝑘 ∈ Keys 𝑥 ∈ Vars tab ∈ T ®𝑐, ®𝑐1, ®𝑐2 ∈ C∗

Prog ::= Sess | Sess | | Prog

Sess ::= Trans | Trans; Sess

Trans ::= begin;Body; commit

Body ::= Instr | Instr;Body

Instr ::= InstrKV | InstrSQL | 𝑥 := 𝑒 | if(𝜙 (®𝑥)){Instr}

InstrKV ::= 𝑥 := read(𝑘) | write(𝑘, 𝑥)

InstrSQL ::= SELECT ®𝑐1 AS 𝑥 FROM tab WHERE 𝜙 (®𝑐2) |

INSERT INTO tab VALUES ®𝑥 |

DELETE FROM tab WHERE 𝜙 (®𝑐) |

UPDATE tab SET ®𝑐1 = ®𝑥 WHERE 𝜙 (®𝑐2)

Fig. 2. Program syntax. The set of all keys is denoted by Keys, Vars denotes the set of local variables, T the

set of table names, and C the set of column names. We use 𝜙 to denote Boolean expressions, and 𝑒 to denote

expressions interpreted as values. We use ®· to denote vectors of elements.

processing (OLTP) workloads (ğ8). MonkeyDB provides a high coverage of weak behaviors
and is able to break all invalid assertions in a few attempts, significantly better than prior
testing solutions.

MonkeyDB and the source code of our benchmarks are available at [Biswas et al. 2021b]. An
extended version of the paper is available at [Biswas et al. 2021a].

2 PROGRAMMING LANGUAGE

Figure 2 lists the definition of two simple programming languages that we use to represent ap-
plications running on top of key-value or SQL stores, respectively. A program is a set of sessions
running in parallel, each session being composed of a sequence of transactions. Each transaction
is delimited by begin and commit instructions, and its body contains instructions that access the
store and manipulate a set of local variables Vars.2 We use symbols 𝑥 , 𝑦, etc. to denote elements of
Vars.

In case of a program running on top of a key-value store, the instructions can be: reading the
value of a key and storing it to a local variable 𝑥 (𝑥 := read(𝑘)) , writing the value of a local variable
𝑥 to a key (write(𝑘, 𝑥)), or an assignment to a local variable 𝑥 . The set of values of keys or local
variables is denoted by Vals. Assignments to local variables use expressions interpreted as values
whose syntax is left unspecified. Each of these instructions can be guarded by a Boolean condition
𝜙 (®𝑥) over a set of local variables ®𝑥 (their syntax is not important). Other constructs like while
loops can be defined in a similar way. Let P𝐾𝑉 denote the set of programs where a transaction
body can contain only such instructions.
For programs running on top of SQL stores, the instructions include simplified versions of

standard SQL instructions and assignments to local variables. These programs run in the context
of a database schema which is a (partial) function S : T ⇀ 2C mapping table names in T to
sets of column names in C. The SQL store is an instance of a database schema S, i.e., a function
D : dom(S) → 2R mapping each table tab in the domain of S to a set of rows of tab, i.e., functions

2For simplicity, we assume that all the transactions in the program commit. Aborted transactions can be ignored when

reasoning about safety because their effects should be invisible to other transactions.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

132:6 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

𝑟 : S(tab) → Vals. We use R to denote the set of all rows. The SELECT instruction retrieves the
columns ®𝑐1 from the set of rows of tab that satisfy 𝜙 (®𝑐2) (®𝑐2 denotes the set of columns used in this
Boolean expression), and stores them into a variable 𝑥 . INSERT adds a new row to tab with values ®𝑥 ,
and DELETE deletes all rows from tab that satisfy a condition 𝜙 (®𝑐). The UPDATE instruction assigns
the columns ®𝑐1 of all rows of tab that satisfy 𝜙 (®𝑐2) with values in ®𝑥 . Let P𝑆𝑄𝐿 denote the set of
programs where a transaction body can contain only such instructions.

3 ISOLATION LEVELS FOR KEY-VALUE STORES

We present the axiomatic framework introduced by Biswas and Enea [2019a] for defining isolation
levels in key-value stores.3 Isolation levels are defined as logical constraints, called axioms, over
histories, which are an abstract representation of the interaction between a program and the store
in a concrete execution.

3.1 Histories

Programs interact with a key-value store by issuing transactions formed of read and write instruc-
tions. The effect of executing one such instruction is represented using an operation, which is an
element of the set

Op = {read𝑖 (𝑘, 𝑣),write𝑖 (𝑘, 𝑣) : 𝑖 ∈ OpId, 𝑘 ∈ Keys, 𝑣 ∈ Vals}

where read𝑖 (𝑘, 𝑣) (resp., write𝑖 (𝑘, 𝑣)) corresponds to reading a value 𝑣 from a key 𝑘 (resp., writing 𝑣
to 𝑘). Each operation is associated with an identifier 𝑖 from an arbitrary setOpId. We omit operation
identifiers when they are not important.

Definition 3.1. A transaction log ⟨𝑡,𝑂, po⟩ is a transaction identifier 𝑡 and a finite set of operations
𝑂 along with a strict total order po on 𝑂 , called program order.

The program order po represents the order between instructions in the body of a transaction.
We assume that each transaction log is well-formed in the sense that if a read of a key 𝑘 is preceded
by a write to 𝑘 in po, then it should return the value written by the last write to 𝑘 before the read
(w.r.t. po). This property is implicit in the definition of every isolation level that we are aware of.
For simplicity, we may use the term transaction instead of transaction log. The set of all transaction
logs is denoted by Tlogs.

The set of read operations read (𝑘, _) in a transaction log 𝑡 that are not preceded by a write to 𝑘
in po is denoted by reads(𝑡). As mentioned above, the other read operations take their values from
writes in the same transaction and their behavior is independent of other transactions. Also, the set
of write operations write (𝑘, _) in 𝑡 that are not followed by other writes to 𝑘 in po is denoted by
writes(𝑡). If a transaction contains multiple writes to the same key, then only the last one (w.r.t. po)
can be visible to other transactions (w.r.t. any isolation level that we are aware of). The extension
to sets of transaction logs is defined as usual. Also, we say that a transaction log 𝑡 writes a key 𝑘 ,
denoted by 𝑡 writes 𝑘 , when write𝑖 (𝑘, 𝑣) ∈ writes(𝑡) for some 𝑖 and 𝑣 .

A history contains a set of transaction logs (with distinct identifiers) ordered by a (partial) session
order so that represents the order between transactions in the same session.4 It also includes a
write-read relation (also called read-from) that łjustifiesž read values by associating each read to a
transaction that wrote the value returned by the read.

3Isolation levels are called consistency models by Biswas and Enea [2019a].
4In the context of our programming language, so would be a union of total orders. This constraint is not important for

defining isolation levels.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:7

𝑡1

𝑡2

writes 𝑘

𝛼

𝛽

wr𝑘

wr

po
co

∀𝑘, ∀𝑡1, 𝑡2, ∀𝛼. 𝑡1 ≠ 𝑡2 ∧

⟨𝑡1, 𝛼 ⟩ ∈ wr𝑘 ∧ 𝑡2 writes 𝑘 ∧

⟨𝑡2, 𝛼 ⟩ ∈ wr ◦ po

⇒ ⟨𝑡2, 𝑡1 ⟩ ∈ co

(a) Read Committed

𝑡1 𝑡3

𝑡2

writes 𝑘

wr𝑘

(wr ∪ so)+

co

∀𝑘, ∀𝑡1, 𝑡2, ∀𝑡3 . 𝑡1 ≠ 𝑡2 ∧

⟨𝑡1, 𝑡3 ⟩ ∈ wr𝑘 ∧ 𝑡2 writes 𝑘 ∧

⟨𝑡2, 𝑡3 ⟩ ∈ (wr ∪ so)+

⇒ ⟨𝑡2, 𝑡1 ⟩ ∈ co

(b) Causal

𝑡1 𝑡3

𝑡2

writes 𝑘

wr𝑘

co

co

∀𝑘, ∀𝑡1, 𝑡2, ∀𝑡3 . 𝑡1 ≠ 𝑡2 ∧

⟨𝑡1, 𝑡3 ⟩ ∈ wr𝑘 ∧ 𝑡2 writes 𝑘 ∧

⟨𝑡2, 𝑡3 ⟩ ∈ co

⇒ ⟨𝑡2, 𝑡1 ⟩ ∈ co

(c) Serializability

Fig. 3. Axioms defining isolations levels. The reflexive and transitive, resp., transitive, closure of a relation 𝑟𝑒𝑙 is

denoted by 𝑟𝑒𝑙∗, resp., 𝑟𝑒𝑙+. Also, ◦ denotes the composition of two relations, i.e., 𝑟𝑒𝑙1◦𝑟𝑒𝑙2 = {⟨𝑎, 𝑏⟩|∃𝑐.⟨𝑎, 𝑐⟩ ∈

𝑟𝑒𝑙1 ∧ ⟨𝑐, 𝑏⟩ ∈ 𝑟𝑒𝑙2}.

Definition 3.2. A history ⟨𝑇, so,wr⟩ is a set of transaction logs𝑇 along with a strict partial session
order so, and a write-read relation wr ⊆ 𝑇 × reads(𝑇) such that the inverse of wr is a total function,
and if (𝑡, read (𝑘, 𝑣)) ∈ wr, then write (𝑘, 𝑣) ∈ 𝑡 , and so ∪ wr is acyclic.

To simplify the technical exposition, we assume that every history includes a distinguished
transaction log writing the initial values of all keys. This transaction log precedes all the other
transaction logs in so. We use ℎ, ℎ1, ℎ2, . . . to range over histories. The set of transaction logs 𝑇 in
a history ℎ = ⟨𝑇, so,wr⟩ is denoted by TLogs(ℎ).

For a key 𝑘 ,wr𝑘 denotes the restriction ofwr to reads of 𝑘 , i.e., ,wr𝑘 = wr∩ (𝑇 ×{read (𝑘, 𝑣) | 𝑣 ∈
Vals}). Moreover, we extend the relations wr and wr𝑘 to pairs of transactions by ⟨𝑡1, 𝑡2⟩ ∈ wr, resp.,
⟨𝑡1, 𝑡2⟩ ∈ wr𝑘 , iff there exists a read operation read (𝑘, 𝑣) ∈ reads(𝑡2) such that ⟨𝑡1, read (𝑘, 𝑣)⟩ ∈ wr,
resp., ⟨𝑡1, read (𝑘, 𝑣)⟩ ∈ wr𝑘 . We say that the transaction log 𝑡1 is read by the transaction log 𝑡2
when ⟨𝑡1, 𝑡2⟩ ∈ wr.

3.2 Axiomatic Framework

A history is said to satisfy a certain isolation level if there exists a strict total order co on its
transaction logs, called commit order, which extends the write-read relation and the session order,
and which satisfies certain properties. These properties, called axioms, relate the commit order
with the session-order and the write-read relation in the history. They are defined as first-order
formulas of the following form:

∀𝑘, ∀𝑡1 ≠ 𝑡2, ∀𝜏 .

⟨𝑡1, 𝜏⟩ ∈ wr𝑘 ∧ 𝑡2 writes 𝑘 ∧ 𝜙 (𝑡2, 𝜏) ⇒ ⟨𝑡2, 𝑡1⟩ ∈ co (1)

where 𝜙 is a property relating 𝑡2 and 𝜏 (i.e., the read or the transaction reading from 𝑡1) that varies
from one axiom to another.5 Intuitively, this axiom schema states the following: in order for 𝜏 to
read specifically 𝑡1’s write on 𝑘 , it must be the case that every 𝑡2 that also writes 𝑘 and satisfies
𝜙 (𝑡2, 𝜏) was committed before 𝑡1. The property 𝜙 relates 𝑡2 and 𝜏 using the relations in a history
and the commit order. Figure 3 shows the axioms defining three isolation levels: Read Committed,
Causal Consistency, and Serializability (see Biswas and Enea [2019a] for axioms defining Read
Atomic, Prefix, and Snapshot Isolation).

5These formulas are interpreted on tuples ⟨ℎ, co⟩ of a history ℎ and a commit order co on the transactions in ℎ as usual.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

132:8 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

write (𝑘1, 1)

write (𝑘1, 2)
write (𝑘2, 2)

read (𝑘2, 2)

read (𝑘1, 1)

co po

wr

wr

(a) Read Committed violation.

write (𝑘1, 1)
read (𝑘1, 1)
write (𝑘1, 2)

read (𝑘1, 1)
read (𝑘2, 1)

read (𝑘1, 2)
write (𝑘2, 1)

wr

wr

wr

wr

(b) Causal violation.

Fig. 4. Histories used to explain the axioms in Figure 3.

For instance, Read Committed [Berenson et al. 1995] requires that every read returns a value
written in a committed transaction, and also, that the reads in the same transaction are łmonotonicž,
i.e., they do not return values that are older, w.r.t. the commit order, than values read in the past.
While the first condition holds for every history (because of the surjectivity of wr), the second
condition is expressed by the axiom Read Committed in Figure 3a, which states that for any
transaction 𝑡1 writing a key 𝑘 that is read at an operaion 𝛼 in a transaction, the set of transactions
𝑡2 writing 𝑘 and read previously in the same transaction (these reads may concern other keys)
must precede 𝑡1 in commit order. For instance, Figure 4a shows a history and a (partial) commit
order that does not satisfy this axiom because read (𝑘1, 1) returns the value written in a transaction
łolderž than the transaction read in the previous read (𝑘2, 2).

The axiom defining Causal Consistency [Lamport 1978] states that for any transaction 𝑡1 writing
a key 𝑘 that is read in a transaction 𝑡3, the set of (wr ∪ so)+ predecessors of 𝑡3 writing 𝑘 must
precede 𝑡1 in commit order ((wr ∪ so)+ is usually called the causal order). A violation of this axiom
can be found in Figure 4b: the transaction 𝑡2 writing 2 to 𝑘1 is a (wr ∪ so)+ predecessor of the
transaction 𝑡3 reading 1 from 𝑘1 because the transaction 𝑡4, writing 1 to 𝑘2, reads 𝑘1 from 𝑡2 and 𝑡3
reads 𝑘2 from 𝑡4. This implies that 𝑡2 should precede in commit order the transaction 𝑡1 writing 1
to 𝑘1, which again, is inconsistent with the write-read relation (𝑡2 reads from 𝑡1).

Finally, Serializability [Papadimitriou 1979] requires that for any transaction 𝑡1 writing to a key 𝑘
that is read in a transaction 𝑡3, the set of co predecessors of 𝑡3 writing 𝑘 must precede 𝑡1 in commit
order. This ensures that each transaction observes the effects of all the co predecessors.

Definition 3.3. For an isolation level 𝐼 defined by a set of axioms 𝑋 , a history ℎ = ⟨𝑇, so,wr⟩

satisfies 𝐼 iff there is a strict total order co s.t. wr ∪ so ⊆ co and ⟨ℎ, co⟩ satisfies 𝑋 .6

4 OPERATIONAL SEMANTICS FOR P𝐾𝑉

We define a small-step operational semantics for key-value store programs, which is parametrized
by an isolation level 𝐼 . Transactions are executed atomically (without interruption) one after another,
and the values returned by read operations are decided using the axiomatic definition of 𝐼 . The
semantics maintains a history of previously executed operations, and the value returned by a read
is chosen non-deterministically as long as extending the current history with the corresponding
write-read dependency satisfies the axioms of 𝐼 . We show that this semantics is sound and complete
for any natural isolation level 𝐼 , i.e., it generates precisely the same set of histories as a baseline
semantics that allows for the fine-grain interleaving of operations in different transactions, and
arbitrary values for read operations as long as they can be proved to be correct at the end of the
execution.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:9

begin;

write(𝑘1,1);

x2=read(𝑘2);

commit

||

begin;

write(𝑘2,1);

x1=read(𝑘1);

commit

write (𝑘1, 0)
write (𝑘2, 0)

write (𝑘1, 1)

so

(b)

write (𝑘1, 0)
write (𝑘2, 0)

write (𝑘1, 1)
read (𝑘2, 0)

so
wr

(c)

write (𝑘1, 0)
write (𝑘2, 0)

write (𝑘1, 1)
read (𝑘2, 0)

write (𝑘2, 1)
read (𝑘1, 0)

so sowr
wr

(d)(a)

Fig. 5. The Causal semantics of the program in (a), assuming that the transaction on the left is scheduled

first.

4.1 Definition of the Operational Semantics

We use the program in Figure 5a to give an overview of our semantics, assuming Causal Consistency.
This program has two concurrent transactions whose reads can both return the initial value 0,
which is not possible under Serializability.

Our semantics executes transactions in their entirety one after another (without interleaving
operations from different transactions), maintaining a history that contains all the executed oper-
ations. We assume that the transaction on the left executes first. Initially, the history contains a
fictitious transaction log that writes the initial value 0 to all the keys, and that will precede all the
transaction logs created during the execution in session order.

Executing a write instruction consists in simply appending the corresponding write operation to
the log of the current transaction. For instance, executing the first write (and begin) in our example
results in adding a transaction log that contains a write operation (see Figure 5b). The execution
continues with the read instruction from the same transaction, and it cannot switch to the other
transaction.
The execution of a read instruction consists in choosing non-deterministically a write-read

dependency that validates Causal when added to the current history. In our example, executing
read(𝑘2) results in adding a write-read dependency from the transaction log writing initial values,
which determines the return value of the read (see Figure 5c). This choice makes the obtained
history satisfy Causal.
The second transaction executes in a similar manner. When executing its read instruction, the

chosen write-read dependency is again related to the transaction log writing initial values (see
Figure 5d). This choice is valid under Causal. Since it is possible that a read does not return a value
written in the preceding transaction, this semantics is able to simulate all the łanomaliesž of a weak
isolation level (this execution being an example).

Formally, the operational semantics is defined as a transition relation⇒𝐼 between configurations,
which are defined as tuples containing the following:

• history ℎ storing the operations executed in the past,
• identifier 𝑗 of the current session,
• local variable valuation 𝛾 for the current transaction,
• code B that remains to be executed from the current transaction, and
• sessions/transactions P that remain to be executed from the original program.

For readability, we define a program as a partial function P : SessId ⇀ Sess that associates
session identifiers in SessIdwith concrete code as defined in Figure 2 (i.e., sequences of transactions).
Similarly, the session order so in a history is defined as a partial function so : SessId ⇀ Tlogs∗ that
associates session identifiers with sequences of transaction logs. Two transaction logs are ordered
by so if one occurs before the other in some sequence so(𝑗) with 𝑗 ∈ SessId.

6Isolation levels like Snapshot Isolation require more than one axiom.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

132:10 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

spawn

𝑡 fresh P(𝑗) = begin;Body; commit; S

ℎ, _, _, 𝜖, P ⇒𝐼 ℎ ⊕𝑗 ⟨𝑡, ∅, ∅⟩, 𝑗, ∅,Body, P[𝑗 ↦→ S]

if-true
𝜓 (®𝑥) [𝑥 ↦→ 𝛾 (𝑥) : 𝑥 ∈ ®𝑥] true

ℎ, 𝑗, 𝛾, if(𝜓 (®𝑥)){Instr};B, P ⇒𝐼 ℎ, 𝑗, 𝛾, Instr;B, P

if-false
𝜓 (®𝑥) [𝑥 ↦→ 𝛾 (𝑥) : 𝑥 ∈ ®𝑥] false

ℎ, 𝑗, 𝛾, if(𝜓 (®𝑥)){Instr};B, P ⇒𝐼 ℎ, 𝑗, 𝛾,B, P

write
𝑣 = 𝛾 (𝑥) 𝑖 fresh

ℎ, 𝑗, 𝛾, write(𝑘, 𝑥);B, P ⇒𝐼 ℎ ⊕𝑗 write𝑖 (𝑘, 𝑣), 𝑗, 𝛾,B, P

read-local
write (𝑘, 𝑣) is the last write on 𝑘 in 𝑡 w.r.t. po 𝑖 fresh

ℎ, 𝑗, 𝛾, 𝑥 := read(𝑘);B, P ⇒𝐼 ℎ ⊕𝑗 read𝑖 (𝑘, 𝑣), 𝑗, 𝛾 [𝑥 ↦→ 𝑣],B, P

read-extern
ℎ = (𝑇, so,wr)

𝑡 is the id of the last transaction log in so(𝑗) write (𝑘, 𝑣) ∈ writes(𝑡 ′) with 𝑡 ′ ∈ 𝑇 and 𝑡 ′ ≠ 𝑡

𝑖 fresh ℎ′ = (ℎ ⊕𝑗 read𝑖 (𝑘, 𝑣)) ⊕ wr (𝑡 ′, read𝑖 (𝑘, 𝑣)) ℎ′ satisfies 𝐼

ℎ, 𝑗, 𝛾, 𝑥 := read(𝑘);B, P ⇒𝐼 ℎ
′, 𝑗, 𝛾 [𝑥 ↦→ 𝑣],B, P

Fig. 6. Operational semantics for P𝐾𝑉 programs under isolation level 𝐼 . For a function 𝑓 : 𝐴 ⇀ 𝐵, 𝑓 [𝑎 ↦→ 𝑏]

denotes the function 𝑓 ′ : 𝐴 ⇀ 𝐵 defined by 𝑓 ′(𝑐) = 𝑓 (𝑐), for every 𝑐 ≠ 𝑎 in the domain of 𝑓 , and 𝑓 ′(𝑎) = 𝑏.

Before presenting the definition of ⇒𝐼 , we introduce some notation. Let ℎ be a history that
contains a representation of so as above. We use ℎ ⊕𝑗 ⟨𝑡,𝑂, po⟩ to denote a history where ⟨𝑡,𝑂, po⟩
is appended to so(𝑗). Also, for an operation 𝑜 , ℎ ⊕𝑗 𝑜 is the history obtained from ℎ by adding 𝑜
to the last transaction log in so(𝑗) and as a last operation in the program order of this log (i.e., if
so(𝑗) = 𝜎 ; ⟨𝑡,𝑂, po⟩, then the session order so′ of ℎ ⊕𝑗 𝑜 is defined by so′(𝑘) = so(𝑘) for all 𝑘 ≠ 𝑗

and so(𝑗) = 𝜎 ; ⟨𝑡,𝑂 ∪ 𝑜, po ∪ {(𝑜 ′, 𝑜) : 𝑜 ′ ∈ 𝑂}⟩). Finally, for a history ℎ = ⟨𝑇, so,wr⟩, ℎ ⊕ wr (𝑡, 𝑜)
is the history obtained from ℎ by adding (𝑡, 𝑜) to the write-read relation.

Figure 6 lists the rules defining⇒𝐼 . The spawn rule starts a new transaction, provided that there
is no other live transaction (B = 𝜖). It adds an empty transaction log to the history and schedules
the body of the transaction. if-true and if-false check the truth value of a Boolean condition of
an if conditional. write corresponds to a write instruction and consists in simply adding a write
operation to the current history. read-local and read-extern concern read instructions. read-
local handles the case where the read follows a write on the same key 𝑘 in the same transaction:
the read returns the value written by the last write on 𝑘 in the current transaction. Otherwise,
read-extern corresponds to reading a value written in another transaction 𝑡 ′ (𝑡 is the id of the log
of the current transaction). The transaction 𝑡 ′ is chosen non-deterministically as long as extending
the current history with the write-read dependency associated to this choice leads to a history that
still satisfies 𝐼 . read-extern applies only when the current transaction contains no write to the
same key.

An initial configuration for program P contains the program P alongwith a historyℎ = ⟨{𝑡0}, ∅, ∅⟩,
where 𝑡0 is a transaction log containing only writes that write the initial values of all keys, and
empty current transaction code (B = 𝜖). An execution of a program P under an isolation level 𝐼 is a
sequence of configurations 𝑐0𝑐1 . . . 𝑐𝑛 where 𝑐0 is an initial configuration for P, and 𝑐𝑚 ⇒𝐼 𝑐𝑚+1,
for every 0 ≤ 𝑚 < 𝑛. We say that 𝑐𝑛 is 𝐼 -reachable from 𝑐0. The history of such an execution is
the history ℎ in the last configuration 𝑐𝑛 . A configuration is called final if it contains the empty
program (P = ∅). Let hist𝐼 (P) denote the set of all histories of an execution of P under 𝐼 that ends
in a final configuration.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:11

spawn*

𝑡 fresh P(𝑗) = begin;Body; commit; S ®B(𝑗) = 𝜖

ℎ, ®𝛾, ®B, P ⇒ ℎ ⊕𝑗 ⟨𝑡, ∅, ∅⟩, ®𝛾 [𝑗 ↦→ ∅], ®B[𝑗 ↦→ Body], P[𝑗 ↦→ S]

if-true*

𝜓 (®𝑥) [𝑥 ↦→ ®𝛾 (𝑗) (𝑥) : 𝑥 ∈ ®𝑥] true ®B(𝑗) = if(𝜓 (®𝑥)){Instr};B

ℎ, ®𝛾, ®B, P ⇒ ℎ, ®𝛾, ®B[𝑗 ↦→ Instr;B], P

if-false*

𝜓 (®𝑥) [𝑥 ↦→ ®𝛾 (𝑗) (𝑥) : 𝑥 ∈ ®𝑥] false ®B(𝑗) = if(𝜓 (®𝑥)){Instr};B

ℎ, ®𝛾, ®B, P ⇒ ℎ, ®𝛾, ®B[𝑗 ↦→ B], P

write*

𝑣 = ®𝛾 (𝑗) (𝑥) 𝑖 fresh ®B(𝑗) = write(𝑘, 𝑥);B

ℎ, ®𝛾, ®B, P ⇒ ℎ ⊕𝑗 write𝑖 (𝑘, 𝑣), ®𝛾, ®B[𝑗 ↦→ B], P

read-local*

write (𝑘, 𝑣) is the last write on 𝑘 in 𝑡 𝑖 fresh ®B(𝑗) = 𝑥 := read(𝑘);B

ℎ, ®𝛾, ®B, P ⇒ ℎ ⊕𝑗 read𝑖 (𝑘, 𝑣), ®𝛾 [(𝑗, 𝑥) ↦→ 𝑣], ®B[𝑗 ↦→ B], P

read-extern*
®B(𝑗) = 𝑥 := read(𝑘);B ℎ = (𝑇, so,wr) 𝑡 is the id of the last transaction log in so(𝑗)

write (𝑘, 𝑣) ∈ writes(𝑡 ′) with 𝑡 ′ ∈ compTrans(ℎ, ®B) and 𝑡 ≠ 𝑡 ′

𝑖 fresh ℎ′ = (ℎ ⊕𝑗 read𝑖 (𝑘, 𝑣)) ⊕ wr (𝑡 ′, read𝑖 (𝑘, 𝑣))

ℎ, ®𝛾, ®B, P ⇒ ℎ′, ®𝛾 [(𝑗, 𝑥) ↦→ 𝑣], ®B[𝑗 ↦→ B], P

Fig. 7. A baseline operational semantics for P𝐾𝑉 programs. Above, compTrans(ℎ, ®B) denotes the set of

transaction logs in ℎ that excludes those corresponding to live transactions, i.e., transaction logs 𝑡 ′′ ∈ 𝑇 such

that 𝑡 ′′ is the last transaction log in some so(𝑗 ′) and ®𝐵(𝑗 ′) ≠ 𝜖 .

4.2 Correctness of the Operational Semantics

We define the correctness of⇒𝐼 in relation to a baseline semantics where operations from differ-
ent transactions can interleave arbitrarily, and the values returned by read operations are only
constrained to come from committed transactions. This semantics is represented by a transition
relation⇒, which is defined by a set of rules that are analogous to⇒𝐼 . Since it allows transactions
to interleave, a configuration contains a history ℎ, the sessions/transactions P that remain to be
executed, and:

• a valuationmap ®𝛾 that records local variable values in the current transaction of each session (®𝛾
associates identifiers of sessions that have live transactions with valuations of local variables),

• a map ®𝐵 that stores the code of each live transaction (associating session identifiers with
code).

Figure 7 lists the rules defining⇒. spawn* starts a new transaction in a session 𝑗 provided that

this session has no live transaction (®B(𝑗) = 𝜖). Compared to spawn in Figure 6, this rule allows
unfinished transactions in other sessions. read-extern* does not check conformance to 𝐼 , but
it allows a read to only return a value written in a completed (committed) transaction. In this
work, we consider only isolation levels satisfying this constraint. The rest of the rules are similar to
those defining⇒𝐼 . Executions, initial and final configurations are defined as in the case of⇒𝐼 . The

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

132:12 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

history of an execution is still defined as the history in the last configuration. Let hist∗ (P) denote
the set of all histories of an execution of P w.r.t.⇒ that ends in a final configuration.
Practical isolation levels satisfy a łprefix-closurež property saying that if the axioms of 𝐼 are

satisfied by a pair ⟨ℎ2, co2⟩, then they are also satisfied by every prefix of ⟨ℎ2, co2⟩. A prefix of
⟨ℎ2, co2⟩ contains a prefix of the sequence of transactions in ℎ2 when ordered according to co2, and
the last transaction log in this prefix is possibly incomplete. In general, this prefix-closure property
holds for isolation levels 𝐼 that are defined by axioms as in (1), provided that the property 𝜙 (𝑡2, 𝛼)
ismonotonic, i.e., the set of models in the context of a pair ⟨ℎ2, co2⟩ is a superset of the set of models
in the context of a prefix ⟨ℎ1, co1⟩ of ⟨ℎ2, co2⟩. For instance, the property 𝜙 in the axiom defining
Causal is (𝑡2, 𝛼) ∈ (wr ∪ so)+, which is clearly monotonic. In general, standard isolation levels are
defined using a property 𝛼 of the form (𝑡2, 𝛼) ∈ 𝑅 where 𝑅 is an expression built from the relations
po, so, wr, and co using (reflexive and) transitive closure and composition of relations [Biswas and
Enea 2019a]. Such properties are monotonic in general (they would not be if those expressions
would use the negation/complement of a relation). An axiom as in (1) is called monotonic when the
property 𝜙 is monotonic.
Formally, a prefix of a tuple {ℎ2, co2} is defined as follows. For a relation 𝑅 ⊆ 𝐴 × 𝐵, the

restriction of 𝑅 to 𝐴′ × 𝐵′, denoted by 𝑅 ↓ 𝐴′ × 𝐵′, is defined by {(𝑎, 𝑏) : (𝑎, 𝑏) ∈ 𝑅, 𝑎 ∈ 𝐴′, 𝑏 ∈ 𝐵′}.
For ℎ1 = ⟨𝑇1, so1,wr1⟩ and ℎ2 = ⟨𝑇2, so2,wr2⟩, we say that ⟨ℎ1, co1⟩ is a prefix of ⟨ℎ2, co2⟩, denoted
by ⟨ℎ1, co1⟩ ≤ ⟨ℎ2, co2⟩, when 𝑇1 = 𝑇 ′

1 ∪ {⟨𝑡,𝑂, po⟩}, 𝑇2 = 𝑇 ′
2 ∪ {⟨𝑡,𝑂 ′, po′⟩}, 𝑇 ′

1 ⊆ 𝑇 ′
2 , 𝑂 ⊆ 𝑂 ′,

po = po′ ↓ 𝑂 ×𝑂 , so1 = so2 ↓ 𝑇1 ×𝑇1, wr1 = wr2 ↓ 𝑇1 × reads(𝑇1), and co1 = co2 ↓ 𝑇1 ×𝑇1.
Then, a property 𝜙 (𝑡2, 𝛼) used to define an axiom like in (1), is called monotonic iff for every

⟨ℎ1, co1⟩ ≤ ⟨ℎ2, co2⟩,

∀𝑡2,∀𝛼.⟨ℎ2, co2⟩ |= 𝜙 (𝑡2, 𝛼) ⇒ ⟨ℎ1, co1⟩ |= 𝜙 (𝑡2, 𝛼).

Lemma 4.1. For any monotonic axiom 𝑋 , if ⟨ℎ1, co1⟩ ≤ ⟨ℎ2, co2⟩, then

⟨ℎ2, co2⟩ satisfies 𝑋 ⇒ ⟨ℎ1, co1⟩ satisfies 𝑋

Proof. (Sketch) Given a monotonic axiom, the number of instantiations of ∀𝑘 , ∀𝑡1, ∀𝑡2, and ∀𝛼
from (1) that satisfy the left-hand side of the entailment in the context of ⟨ℎ1, co1⟩ is a subset of
the same type of instantiations in the context of ⟨ℎ2, co2⟩. Therefore, the co constraints imposed in
the context of ⟨ℎ1, co1⟩ (by the right-hand side of the entailment) are a subset of the co constraints
imposed in the context of ⟨ℎ2, co2⟩. Since the latter are satisfied (because ⟨ℎ2, co2⟩ satisfies 𝑋), the
former are also satisfied and hence, ⟨ℎ1, co1⟩ satisfies 𝑋 . □

Lemma 4.1 extends obviously to isolation levels defined as conjunctions of axioms (which is the
case for all the isolation levels that we are aware of [Biswas and Enea 2019a]).
The following theorem shows that hist𝐼 (P) is precisely the set of histories under the baseline

semantics, which satisfy 𝐼 (the validity of the reads is checked at the end of an execution), provided
that the axioms of 𝐼 are monotonic. The ⊆ direction follows mostly from the fact that ⇒𝐼 is more
constrained than⇒. For the opposite direction, given a history ℎ that satisfies 𝐼 , i.e., there exists
a commit order co such that ⟨ℎ, co⟩ satisfies the axioms of 𝐼 , we can show that there exists an
execution under ⇒𝐼 with history ℎ, where transactions execute atomically in the order defined by
co. The prefix closure property is used to prove that read-extern transitions are enabled (these
transitions get executed with a prefix of ℎ).

Theorem 4.2. For any isolation level 𝐼 defined by a set of monotonic axioms, hist𝐼 (P) = {ℎ ∈
hist∗ (P) : ℎ satisfies 𝐼 }.

Proof. (Sketch) For the direction ⊆, let 𝑐0𝑐1 . . . 𝑐𝑛 be an execution under ⇒𝐼 , where 𝑐𝑛 is a
final configuration. We need to show that the history ℎ𝑛 contained in 𝑐𝑛 belongs to hist∗ (P) and

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:13

Table:

A

Id Name City

1 Alice Paris

2 Bob Bangalore

3 Charles Bucharest

Intermediate representation:

A = { 1, 2, 3 }

A.1.Id: 1, A.1.Name: Alice, A.1.City: Paris

A.2.Id: 2, A.2.Name: Bob, A.2.City: Bangalore

A.3.Id: 3, A.3.Name: Charles, A.3.City: Bucharest

Fig. 8. Representing tables with set variables and key-value pairs. We write a key-value pair as key:value.

that it satisfies 𝐼 . The fact that ℎ𝑛 ∈ hist∗ (P) is a direct consequence of the fact that ⇒𝐼 is more
constrained than ⇒. To prove that ℎ𝑛 satisfies 𝐼 , let 𝑐 𝑗 be the latest configuration in the execution
that is obtained from 𝑐 𝑗−1 through an application of read-extern. By the definition of this rule, the
history ℎ 𝑗 in 𝑐 𝑗 satisfies 𝐼 . Since the write-read relation of ℎ 𝑗 is identical to that of ℎ𝑛 , any axiom of
the form (1) satisfied by ℎ 𝑗 is also satisfied by ℎ𝑛 (the set of instantiations of ∀𝑡1 and ∀𝛼 in (1) that
satisfy the left part of the entailment are the same in ℎ 𝑗 and ℎ𝑛). Therefore, ℎ𝑛 satisfies 𝐼 , which
concludes this part of the proof.
For the reverse, let ℎ = ⟨𝑇, so,wr⟩ ∈ hist∗ (P) that satisfies 𝐼 . Since ℎ satisfies 𝐼 , there exists

a commit order co such that wr ∪ so ⊆ co and ⟨ℎ, co⟩ satisfies the axioms defining 𝐼 . We show
that there exists an execution 𝑐0𝑐1 . . . 𝑐𝑛 under ⇒𝐼 where transactions are executed serially in the
order defined by co, such that 𝑐𝑛 is a final configuration that contains ℎ. The only difficulty is
showing that the read-extern transitions between two configurations 𝑐 𝑗 and 𝑐 𝑗+1 that add a write-
read dependency (𝑡 ′, read (𝑘, 𝑣)) ∈ wr are enabled even though the transaction log 𝑡 containing
read (𝑘, 𝑣) is łincompletež in the history ℎ 𝑗 of 𝑐 𝑗 , and ℎ 𝑗 does not contain transactions committed
after 𝑡 . This relies on the prefix-closure property in Lemma 4.1. Let co𝑗 be the order in which

transactions have been executed until 𝑐 𝑗 . Then,
〈

ℎ 𝑗 , co𝑗
〉

is a prefix of ⟨ℎ, co⟩, and
〈

ℎ 𝑗 , co𝑗
〉

|= 𝐼

because ⟨ℎ, co⟩ |= 𝐼 . □

It can also be shown that⇒𝐼 is deadlock-free for every natural isolation level (e.g., Read Commit-
ted, Causal Consistency, Snapshot Isolation, and Serializability), i.e., every read can return some
value satisfying the axioms of 𝐼 at the time when it is executed (independently of previous choices).

5 COMPILING SQL TO KEY-VALUE API

We define an operational semantics for SQL programs (in P𝑆𝑄𝐿) based on a compiler that rewrites
SQL queries to key-value read and write instructions. For presentation reasons, we use an inter-
mediate representation where each table of a database instance is represented using a set-valued
variable that stores values of the primary key (identifying uniquely the rows in the table) and a set
of key-value pairs, one for each cell in the table.7 In a second step, we define a rewriting of the API
used to manipulate set variables into key-value read and write instructions.

Intermediate Representation. Let S : T⇀ 2C be a database schema (recall that T and C are the
set of table names and column names, resp.). For each table tab, let tab.pkey be the name of the
primary key column. We represent an instance D : dom(S) → 2R using:

• for each table tab, a set variable tab (with the same name) that contains the primary key
value 𝑟 (tab.pkey) of every row 𝑟 ∈ D(tab),

• for each row 𝑟 ∈ D(tab) with primary key value pkeyVal = 𝑟 (tab.pkey), and each column
𝑐 ∈ S(tab), a key tab.pkeyVal.𝑐 associated with the value 𝑟 (𝑐).

7For simplicity, we assume that primary keys correspond to a single column in the table.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

132:14 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

SELECT/DELETE/UPDATE
rows := elements(tab)

for (let pkeyVal of rows)

for (let c of ®𝑐2)

val[c] := read(tab.pkeyVal.c)

if (𝜙 [c ↦→ val[c] : c ∈ ®𝑐2] true)

// SELECT ®𝑐1 AS 𝑥 FROM tab WHERE 𝜙 (®𝑐2)

for (let c of ®𝑐1)

out[c] := read(tab.pkeyVal.c)

x := x ∪ out

// DELETE FROM tab WHERE 𝜙 (®𝑐2)

remove(tab, pkeyVal);

// UPDATE tab SET ®𝑐1 = ®𝑥 WHERE 𝜙 (®𝑐2)

for (let c of ®𝑐1)

write(tab.pkeyVal.c, 𝛾(®𝑥[c]))

INSERT INTO tab VALUES ®𝑥
pkeyVal := 𝛾(®𝑥[0])

if (add(tab,pkeyVal))

for (let c of S(tab))

write(tab.pkeyVal.c, 𝛾(®𝑥[c]))

Fig. 9. Compiling SQL queries to the intermediate representation. Above, 𝛾 is a valuation of local variables.

Also, in the case of INSERT, we assume that the first element of ®𝑥 represents the value of the primary key.

Example 5.1. The table A on the left of Figure 8, where the primary key is defined by the Id
column, is represented using a set variable A storing the set of values in the column Id, and one
key-value pair for each cell in the table.

Figure 9 lists our rewriting of SQL queries over a database instanceD to programs that manipulate
the set variables and key-value pairs described above. This rewriting contains the minimal set
of accesses to the cells of a table that are needed to implement an SQL query according to its
conventional specification. To manipulate set variables, we use add and remove for adding and
removing elements, respectively (returning true or false when the element is already present or
deleted from the set, respectively), and elements that returns all of the elements in the input set.8

SELECT, DELETE, and UPDATE start by reading the contents of the set variable storing primary
key values and then, for every row, the columns in ®𝑐2 needed to check the Boolean condition 𝜙 (the
keys corresponding to these columns). For every row satisfying this Boolean condition, SELECT
continues by reading the keys associated to the columns that need to be returned, DELETE removes
the primary key value associated to this row from the set tab, and UPDATE writes to the keys
corresponding to the columns that need to be updated. In the case of UPDATE, we assume that the
values of the variables in ®𝑥 are obtained from a valuation 𝛾 (this valuation would be maintained
by the operational semantics of the underlying key-value store). INSERT adds a new primary key
value to the set variable tab (the call to add checks whether this value is unique) and then writes to
the keys representing columns of this new row.

Manipulating Set Variables. Based on the standard representation of a set using its characteristic
function, we implement each set variable tab using a set of keys tab.has.pkeyVal, one for each
value pkeyVal ∈ Vals. These keys are associated with Boolean values, indicating whether pkeyVal
is contained in tab. In a concrete implementation, this set of keys need not be fixed a-priori,
but can grow during the execution with every new instance of an INSERT. Figure 10 lists the
implementations of add/elements, which are self-explanatory (remove is analogous).

8add(𝑠, 𝑒) and remove(𝑠, 𝑒) add and remove the element 𝑒 from 𝑠 , respectively. elements(𝑠) returns the content of 𝑠 .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:15

add(tab,pkeyVal):
if (read(tab.has.pkeyVal))

return false

write(tab.has.pkeyVal,true)

return true

elements(𝑡𝑎𝑏):
ret := ∅

for (let pkeyVal of Vals)

if (read(tab.has.pkeyVal))

ret := ret ∪ {pkeyVal}

return ret;

Fig. 10. Manipulating set variables using key-value pairs.

6 IMPLEMENTATION

We implemented MonkeyDB to support an interface common to most storage systems. Operations
can be either key-value (KV) updates (to access data as a KV map) or SQL queries (to access data as
a relational database). MonkeyDB supports transactions as well; a transaction can include multiple
operations. Figure 11 shows the architecture of MonkeyDB. A client can connect to MonkeyDB
over a TCP connection, as is standard for SQL databases.9 This offers a plug-and-play experience
when using standard frameworks such as JDBC [Java Platform [n. d.]]. Client applications can
also use MonkeyDB as a library in order to directly invoke the storage APIs, or interact with it via
HTTP requests, with JSON payloads.
MonkeyDB contains a SQL-To-KV compiler that parses an input query, builds its Abstract

Syntax Tree (AST) and then applies the rewriting steps described in Section 5 to produce an
equivalent sequence of KV API calls (read() and write()).10 It uses a hashing routine (hash) to
generate unique keys corresponding to each cell in a table. For instance, in order to insert a value
𝑣 for a column 𝑐 in a particular row with primary key value pkeyVal, of a table tab, we invoke
write(hash(tab, pkeyVal, 𝑐), 𝑣). We currently support only a subset of the standard SQL
operators. For instance, nested queries or join operators are unsupported; these can be added in
the future with more engineering effort. Note that our SQL compiler maintains cell-level atomicity
in order to minimize the set of possible conflicts between concurrent transactions (inspired by
Rahmani et al. [2019]). If a particular SQL implementation requires row-level atomicity, it can be
imposed in our compiler by allowing the keys to represent entire rows.
MonkeyDB schedules transactions from different sessions one after the other using a single

global lock. Internally, it maintains execution state as a history consisting of a set of transaction
logs, write-read relations and a partial session order (as discussed in ğ3). On a read(), MonkeyDB
first collects a set of possible writes present in transaction log that can potentially form write-read
(read-from) relationships, and then invokes the consistency checker (Figure 11) to confirm validity
under the chosen isolation level. Finally, it randomly returns one of the values associated with valid
writes. A user can optionally instruct MonkeyDB to only select from the set of latest valid write
per session. This option helps limit weak behaviors for certain reads.

Our consistency checker maintains the session order and the write-read relation as a graph, and
computes commit-order constraints based on the axioms described in Section 3.2. The consistency
checker is an independent and pluggable module: we have one for Read Committed and one for
Causal Consistency, and more can be added in the future. For these two isolation levels, we have
developed an incremental version of the algorithms presented by Biswas and Enea [2019a] where
commit-order constraints are preserved between different invocations of the consistency checker
(as new operations/transactions are added to the history). This is possible because the commit-
order constraints imposed by the corresponding axioms (Figure 3a and Figure 3b) depend only on

9We support the MySQL client-server protocol using https://github.com/jonhoo/msql-srv.
10We use https://github.com/ballista-compute/sqlparser-rs

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

https://github.com/jonhoo/msql-srv
https://github.com/ballista-compute/sqlparser-rs

132:16 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

SQL Query Interface

SQL-To-KV Compiler

KV Store Interface

(API / HTTP)

Write

Read

Client Application
Running on KV Store

Client Application
Running on SQL Store

In-Memory
KV Store

Monkey DB

Fig. 11. Architecture of MonkeyDB

po, so, and wr, and these relations grow monotonically while the history is extended with new
operations/transactions. While the consistency checker is prior work, it only constitutes 10% of
the total code base (even excluding imported packages), signalling that significant implementation
effort was required to design an efficient and usable tool.

7 EVALUATION: MICROBENCHMARKS

We consider a set of micro-benchmarks inspired from real-world applications (ğ7.1) and evaluate the
number of test iterations required to fail an invalid assertion (ğ7.2). We also measure the coverage
of weak behaviors provided by MonkeyDB (ğ7.3). Each of these applications were implemented
based on their specifications described in prior work; they all use MonkeyDB as a library, via its
KV interface.

7.1 Applications

Twitter [Twissandra 2020]. This is based on a social-networking application that allows users
to create a new account, follow, unfollow, tweet, browse the newsfeed (tweets from users you
follow) and the timeline of any particular user. Figure 12 shows the pseudo code for two operations,
NewsFeed and Timeline.
A user can access twitter from multiple clients (sessions), which could lead to unexpected

behavior under weak isolation levels. Consider the following scenario with two users, 𝐴 and 𝐵

where user 𝐴 is accessing twitter from two different sessions, 𝑆1 and 𝑆2. User 𝐴 views the timeline
of user 𝐵 from one session (𝑆1:Timeline(𝐵)) and decides to follow 𝐵 through another session
(𝑆2:Follow(𝐴, 𝐵)). Now when user 𝐴 visits their timeline or newsfeed (𝑆2:NewsFeed(𝐴)), they
expect to see all the tweets of 𝐵 that were visible via Timeline in session 𝑆1. But under weak
isolation levels, this does not always hold true and there could be missing tweets.

Shopping Cart [Sivaramakrishnan et al. 2015]. This application allows a user to add, remove and
change quantity of items from different sessions. It also allows the user to view all items present in
the shopping cart. The pseudo code and an unexpected behavior under weak isolation levels were
discussed in ğ1, Figure 1.

Courseware [Nair et al. 2020]. This is an application for managing students and courses, allowing
students to register, de-register and enroll for courses. Courses can also be created or deleted.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:17

// Get following users' tweets

NewsFeed(user u) {

begin()

FW = read("following:" + u.id)

NF = {}

foreach v ∈ FW:

T = read("tweets:" + v.id)

NF = NF ∪ T

commit()

return sortByTime(NF)

}

// Get user's tweets

Timeline(user u) {

begin()

key = "tweets:" + u.id

T = read(key)

commit()

return sortByTime(T)

}

Enroll(student s, course c) {

begin()

S = read("students")

C = read("courses")

if (s ∉ S || c ∉ C)

throw InvalidEnrollment

E = read("enrollments")

if |{u: (u, c) ∈ E}| == capacity(c)

throw CourseFull

E = E ∪ {(s, c)}

write("enrollments", E)

commit()

}

Push(v) {

n = {value: v, next: null}

while (true)

top = read("head");

n.next = top;

if (CAS("head", top, n))

break

}

Pop() {

while (true)

top = read("head")

if (top == null)

return EMPTY

v = top.value

n = top.next

if (CAS("head", top, n))

return v

}

Fig. 12. Example operations from the microbenchmark applications

Courseware maintains the current status of students (registered, de-registered), courses (active,
deleted) as well as enrollments. Enrollment can contain only registered students and active courses,
subject to the capacity of the course. Figure 12 shows an implementation of the Enroll operation.
Enroll checks that the given student and course are valid and also checks whether the course
registration has reached its capacity before enrolling the student to the course.

Under weak isolation, it is possible that two different students, when trying to enroll concurrently,
will both succeed even though only one spot was left in the course. Another example that breaks the
application is when a student is trying to register for a course that is being concurrently removed:
once the course is removed, no student should be seen as enrolled in that course.

Treiber Stack [Nagar et al. 2020]. Treiber stack is a concurrent stack data structure that uses
compare-and-swap (CAS) instructions instead of locks for synchronization. This algorithm was
ported to operate on a kv-store by Nagar et al. [2020] and we use that implementation. Essentially,
the stack contents are placed in a kv-store, instead of using an in-memory linked data structure.
The pseudo-code for push and pop operations is shown in Figure 12. Each row in the stack is
represented by a key-value pair in the kv-store. The key is the node id and the value contains a pair
consisting of the stack element and the key of the next row down in the stack. A designated key
łheadž stores the key of the top of the stack. We generate the node id based on the current size of
the kv-store. Both push and pop operations use CAS to make changes to the łheadž key-value pair.
CAS is implemented as a transaction, but the pop and push operations do not use transactions, i.e.,
each read/write/CAS is its own transaction.

When two different clients try to pop from the stack concurrently, under serializability, each pop

would return a unique value, assuming that each pushed value is unique. However, under Causal
Consistency, concurrent pops can return the same value.

7.2 Assertion Checking

We ran the above applications with MonkeyDB to find out if assertions, capturing unexpected
behavior, were violated under Causal Consistency. Table 1 summarizes the results. For each appli-
cation, we used 3 client threads and 3 operations per thread. We ran each test, with MonkeyDB,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

132:18 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

Table 1. Assertions checking results in microbenchmarks

Application Assertion Avg. time to fail

(Iters) (sec)

Stack Element popped more than once 3.7 0.02

Courseware Course registration overflow 10.6 0.09

Courseware Removed course registration 57.5 0.52

Shopping Item reappears after deletion 20.2 0.14

Twitter Missing tweets in feed 6.3 0.03

10,000 times; we refer to a test run as an iteration. We report the average number of iterations
(Iters) before an assertion failed, and the corresponding time taken (sec). All the assertions were
violated within 58 iterations, in half a second or less. In contrast, running with an actual database
almost never produces an assertion violation.

7.3 Coverage

The previous section only checked for a particular set of assertions. As an additional measure of
test robustness, we count the number of distinct client-observable states generated by a test. A
client-observable state, for an execution, is the vector of all values returned by read operations. For
instance, a stack’s state is defined by return values of pop operations; a shopping cart’s state is
defined by the return value of GetCart and so on.

For this experiment, we randomly generated test harnesses; each harness spawns multiple threads
that each execute a sequence of operations. In order to compute the absolute maximum of possible
states, we had to limit the size of the tests: either 2 or 3 threads, each choosing between 2 and 4
operations.
Note that any program that concurrently executes operations against a store has two main

sources of non-determinism: the first is the interleaving of operations (i.e., the order in which
operations are submitted to the store) and second is the choice of read-from (i.e., the value returned
by the store under its configured isolation level). MonkeyDB only controls the latter; it is up to the
application to control the former. There are many tools that systematically enumerate interleavings
(such as Chess [Musuvathi and Qadeer 2008], Coyote [Microsoft Coyote 2019]), but we use a simple
trick instead to avoid imposing any burden on the application: we included an option in MonkeyDB
to deliberately add a small random delay (sleep between 0 and 4 ms) before each transaction begins.
This option was sufficient in our experiments, as we show next.

We also implemented a special setup using theCoyote tool [Microsoft Coyote 2019] to enumerate
all sources of non-determinism, interleavings as well as read-from, in order to explore the entire
state space of a test. We use this to compute the total number of states. Figure 13 shows the
number of distinct states observed under different isolation levels (with and without the delay
option), averaged across multiple (50) test harnesses, as we increase the number of iterations. For
demonstrating the effectiveness of MonkeyDB in the limit, we also show the max value computed
by Coyote for each of serializability and Causal Consistency. Note that the Coyote approach was
designed only to compute the max number. It usually took very large number of iterations to reach
that max, hence we do not recommend it as a practically feasible approach.
Each of these graphs show similar trends: the number of states with Causal Consistency are

much higher than with serializability. Thus, testing with a store that is unable to generate weak
behaviors will likely be ineffective. Furthermore, the łdelayž versions of MonkeyDB are able to
approach the maximum within a few thousand attempts, implying that MonkeyDB’s strategy of
per-read randomness is effective for providing coverage to the application.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:19

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

0 50 100 150 200 250 300
0

2

4

6

8

10

12

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

causal_max
causal_delay
causal
serializability_max
serializability_delay
serializability

Shopping Cart Twitter

Courseware Stack

Number of Iterations

Av
g.

 U
ni

qu
e

St
at

es

Fig. 13. State coverage obtained with MonkeyDB for various microbenchmarks

8 EVALUATION: OLTP WORKLOADS

OLTPBench [Difallah et al. 2013] is a benchmark suite of representative OLTP workloads for
relational databases. We picked a subset of OLTPBench for which we had reasonable assertions.
Table 2 lists basic information such as the number of database tables, the number of static trans-
actions, how many of them are read-only, and the number of different assertions corresponding
to system invariants for testing the benchmark. We modified OLTPBench by rewriting SQL join
and aggregation operators into equivalent application-level loops, following a similar strategy as
Rahmani et al. [2019]. Except for this change, we ran OLTPBench unmodified.
For TPC-C, we obtained a set of 12 invariants from its specification document [Council 2020].

For all other benchmarks, we manually identified invariants that the application should satisfy.
We asserted these invariants by issuing a read-only transaction to MonkeyDB at the end of the
execution of the benchmark. None of the assertions fail under serializability; they are indeed
invariants under serializability.11 When using weaker isolation, we configured MonkeyDB so that
the reads in assertion-checking transactions return only latest valid writes per session (ğ6) in order
to isolate the weak behavior to only the application.

We ran each benchmark 100 times and report, for each assertion, the number of runs in which it
was violated. Note that OLTPBench runs in two phases. The first is a loading phase that consists of
a big initial transaction to populate tables with data, and then the execution phase issues multiple
concurrent transactions. With the goal of testing correctness, we turn down the scale factor to
generate a small load and limit the execution phase time to ten seconds with just two or three
sessions. A smaller test setup has the advantage of making debugging easier. With MonkeyDB,
there is no need to generate large workloads.

11We initially observed two assertions failing under serializability. Upon analyzing the code, we identified that the behavior

is due to a bug in OLTPBench that we have reported in an issue on their Github repository.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

https://github.com/oltpbenchmark/oltpbench/issues/345

132:20 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

Table 2. OLTP benchmarks tested with MonkeyDB

Benchmark #Tables #Txns #Read-only #Assertions

TPC-C 9 5 2 12

SmallBank 3 6 1 1

Voter 3 1 0 1

Wikipedia 12 5 2 3

Fig. 14. Assertion checking with MonkeyDB: TPC-C

8.1 TPC-C

TPC-C emulates a wholesale supplier transactional system that delivers orders for a warehouse
company. This benchmark deals with customers, payments, orders, warehouses, deliveries, etc. We
configured OLTPBench to issue a higher proportion (> 85%) of update transactions, compared to
read-only ones. Further, we considered a small input workload constituting of one warehouse, two
districts per warehouse and three customers per district.

TPC-C has twelve assertions (A1 to A12) that check for consistency between the database tables.
For example, A12 checks: for any customer, the sum of delivered order-line amounts must be equal
to the sum of balance amount and YTD (Year-To-Date) payment amount of that customer.
Figure 14 shows the percentage of test runs in which an assertion failed. It shows that all

the twelve assertions are violated under Read Committed isolation level. In fact, 9 out of the 12
assertions are violated in more than 60% of the test runs. Under Causal Consistency, all assertions
are violated with three sessions, except for A4 and A11. We manually inspected TPC-C and we
believe that both of these assertions are valid under Causal Consistency. For instance, A4 checks for
consistency between two tables, both of which are only updated within the same transaction, thus
Causal Consistency is enough to preserve consistency between them. These results demonstrate
the effectiveness of MonkeyDB in breaking invalid assertions.

8.2 SmallBank, Voter, and Wikipedia

SmallBank is a standard financial banking system, dealing with customers, saving and checking
accounts, money transfers, etc. Voter emulates the voting system of a television show and allows
users to vote for their favorite contestants. Wikipedia is based on the popular online encyclopedia. It
deals with a complex database schema involving page revisions, page views, user accounts, logging,
etc. It allows users to edit its pages and maintains a history of page edits and user actions.
We identified a set of five assertions, A13 to A17, that should be satisfied by these systems. For

SmallBank, we check if the total money in the bank remains the same while it is transfered from

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:21

Fig. 15. Assertion checking: SmallBank, Voter, and Wikipedia

one account to another (A13). Voter requires that the number of votes by a user is limited to a fixed
threshold (A14). For Wikipedia, we check if for a given user and for a given page, the number of
edits recorded in the user information, history, and logging tables are consistent (A15-A17). As
before, we consider small workloads: (1) five customers for SmallBank, (2) one user for Voter, and
(3) two pages and two users for Wikipedia.

Figure 15 shows the results. MonkeyDB detected that all the assertions are invalid under the
chosen isolation levels. Under Causal Consistency, MonkeyDB could break an assertion in 26.7%
(geo-mean) runs given 2 sessions and in 37.2% (geo-mean) runs given 3 sessions. Under Read
Committed, the corresponding numbers are 56.1% and 65.4% for 2 and 3 sessions, respectively.

9 COMPARISON TO OTHER TESTING TECHNIQUES

We compared the effectiveness of MonkeyDB against using a standard database (MySQL) and also
against using the state-of-the-art random testing tool Jepsen [Jepsen 2020]. Jepsen injects noise,
in the form of network and system faults, into an executing database, increasing the chances of
exercising corner cases of the database. We conducted experiments using the TPC-C benchmark.
To run TPC-C on a standard database, we used the same test setup as in Section 8, except

with MySQL in place of MonkeyDB. We configured MySQL to run under Read Committed and
used the same execution time limit of 10 seconds, as that of MonkeyDB. We observed that using
MySQL, only two assertions were violated (A10 and A12), even when we increased the number
of sessions to ten. (Whereas, MonkeyDB could violate all twelve.) We note that MySQL is much
faster than MonkeyDB. For 2 and 3 sessions under Read Committed with 10 seconds time limit, the
total throughput (transactions per session) for MySQL is 450 and 300, respectively, whereas the
throughput of MonkeyDB is 6 and 4, respectively. Nonetheless, MySQL is unable to violate most
assertions.

For the Jepsen experiment, we configured a Galera Cluster [Galera 2020] to run MariaDB [Foun-
dation 2020] with Jepsen. (We switched to using MariaDB instead of MySQL because it was easier
to set up with Gelera, but MariaDB is designed to be a drop-in replacement for MySQL, so we do
not expect results to change much between these two databases.) We configured MariaDB to use
Read Committed. With Jepsen, we cannot run OLTPBench directly because Jepsen requires the
workload to be expressed in its own language (Clojure). We used a version of TPC-C transactions
written in Java (that can be easily invoked from Clojure) from prior work [Rahmani 2018; Rahmani
et al. 2019]. We still had to initialize the database. For this, we created a dump of the database state

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

132:22 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

Fig. 16. Assertion checking with Jepsen (Bridge nemesis): TPC-C

using sqldump12 after the initialization phase of OLTPBench finished. We loaded this dump into
MariaDB before running the TPC-C transactions.
We conducted the experiment on different cluster sizes: two, three, five and ten nodes, with

one session per node. We let Jepsen run for the same execution time limit of 10 seconds with
20 transactions per second on average. Jepsen provides different fault injection strategies (called
nemesis). We ran our experiment with three different nemesis configurations [Jepsen Nemesis 2021]:
(1) ‘clock scrambler’ with two seconds (scrambles the system clock at each node), (2) ‘partition-
random-halves’ (random partitioning of the network into two halves), and (3) ‘bridge’ (random
partitioning as in the previous configuration but with an additional bridging node). We noticed
that the Galera cluster is robust against these different nemesis configurations, and the number
of assertion violations remains the same for each of them. Figure 16 shows the percentage of test
runs in which the assertions are violated when TPC-C is run for 100 times on Jepsen with ‘bridge’
configuration. It shows that the Jepsen setup could violate only six out of twelve assertions, even
when run with up to ten sessions.

The above results demonstrate the ability of MonkeyDB to efficiently test for weak behaviours in
client applications in comparison with related techniques. In contrast to Jepsen, MonkeyDB does not
require setting up a cluster, trying out different partitioning heuristics and system configurations to
introduce weak behaviours, or re-writing client applications. MonkeyDB makes it straightforward
to unit test any storage-backed application.

We would like to qualify the above results with a remark. MonkeyDB works off the specification
of an isolation level, rather than a concrete implementation. It is possible that some implementations
(like MySQL or MariaDB) may not exhibit all possible weak behaviors for a declared isolation
level, i.e., they implement something stronger. In other words, MonkeyDB is a realization of the
specification rather than a replacement for a concrete implementation. Therefore, it is possible,
that in the experiments described above, it may, in fact, be impossible for the remaining TPC-C
assertions to be violated with MariaDB because MariaDB implements something stronger than
Read Committed.
However, our results are still useful. Knowing the exact isolation guarantees of a database

requires a close examination of its implementation that a user may not be prepared to do. Moreover,
implementations change with software versions, and some applications need to support multiple
databases in a plug-and-play manner. For the developer, it is thus still useful to work off the

12Available here: https://mariadb.com/kb/en/mysqldump/

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

https://mariadb.com/kb/en/mysqldump/

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:23

specification of the isolation level, rather than be left wondering about actual behaviors that a
database might provide.

In terms of the formalizations, we have followed Berenson et al. [1995] and Cerone et al. [2015].
In particular, Biswas and Enea [2019b] has shown that the axiomatic models we are using in this
paper are equivalent to those of Cerone et al. [2015]. It is an important problem for the research
community to define tight formalizations for existing databases, but that problem is beyond the
scope of this paper.

10 RELATED WORK

There have been several directions of work addressing the correctness of database-backed applica-
tions. We directly build upon one line of work concerned with the logical formalization of isolation
levels [Adya et al. 2000; Berenson et al. 1995; Biswas and Enea 2019a; Cerone et al. 2015; X3 1992].
Our work relies on the axiomatic definitions of isolation levels introduced by Biswas and Enea
[2019a], which have also investigated the problem of checking whether a given history satisfies a
certain isolation level. Our kv-store implementation relies on these algorithms to check the validity
of the values returned by read operations. Working with a logical formalization allowed us to avoid
implementing an actual database with replication or sophisticated synchronization.
Another line of work concentrates on the problem of finding łanomaliesž: behaviors that are

not possible under serializability. This is typically done via a static analysis of the application code
that builds a static dependency graph that over-approximates the data dependencies in all possible
executions of the application [Bernardi and Gotsman 2016; Cerone and Gotsman 2018; Fekete et al.
2005; Gan et al. 2020; Jorwekar et al. 2007; Warszawski and Bailis 2017]. Anomalies with respect to a
given isolation level then correspond to a particular class of cycles in this graph. Static dependency
graphs turn out to be highly imprecise in representing feasible executions, leading to false positives.
Another source of false positives is that an anomaly might not be a bug because the application
may already be designed to handle the non-serializable behavior [Brutschy et al. 2018; Gan et al.
2020]. Recent work has tried to address these issues by using more precise logical encodings of the
application, e.g. [Brutschy et al. 2017, 2018], or by using user-guided heuristics [Gan et al. 2020].

Another approach consists of modeling the application logic and the isolation level in first-order
logic and relying on SMT solvers to search for anomalies [Kaki et al. 2018; Nagar and Jagannathan
2018; Ozkan 2020], or defining specialized reductions to assertion checking [Beillahi et al. 2019a,b].
The Clotho tool [Rahmani et al. 2019], for instance, uses a static analysis of the application to
generate test cases with plausible anomalies, which are deployed in a concrete testing environment
for generating actual executions. Our approach, based on testing with MonkeyDB, has several
practical advantages. There is no need for analyzing application code; we can work with any
application. There are no false positives because we directly run the application and check for user-
defined assertions, instead of looking for application-agnostic anomalies. The limitation, however,
of the MonkeyDB approach is the inherent incompleteness of testing.

Several works have looked at the problem of reasoning about the correctness of applications exe-
cuting under weak isolation and introducing additional synchronization when necessary [Balegas
et al. 2015; Gotsman et al. 2016; Li et al. 2014; Nair et al. 2020]. As in the previous case, our work
based on testing has the advantage that it can scale to real sized applications (as opposed to these
techniques which are based on static analysis or logical proof arguments), but it cannot prove that
an application is correct. Moreover, the issue of repairing applications is orthogonal to our work.
From a technical perspective, our operational semantics based on recording past operations

and certain data-flow and control-flow dependencies is similar to recent work on stateless model
checking in the context of weak memory models (of hardware or languages). One line of work,
e.g. [Abdulla et al. 2015; Kokologiannakis et al. 2018], is concerned with partial-order reduction

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

132:24 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

(POR) so that the model checkers can avoid enumerating equivalent executions. MonkeyDB instead
relies on randomness to provide coverage. POR is beyond the scope of our work, but an interesting
direction for future work. Another similarity is with testing of C/C++ applications under the c11
memory model [Lidbury and Donaldson 2017; Norris and Demsky 2013]. DB applications are,
however, very different in nature compared to ones that exploit the c11 memory model. The latter
is about implementation of mutual exclusion, concurrent lock-free data structures, etc., which are
usually not a concern with DB applications that instead rely on transactions. Furthermore, a DB is
usually always external to an application, allowing us to design MonkeyDB as a standalone entity.
With C/C++, each load or store operation potentially interacts with the memory model, mandating
the need for detailed instrumentation techniques.

11 CONCLUSIONS AND FUTURE WORK

Our goal is to enable developers to test the correctness of their storage-backed applications under
weak isolation levels. Such bugs are hard to catch because weak behaviors are rarely generated
by real storage systems, but failure to address them can lead to loss of business [Warszawski and
Bailis 2017]. We present MonkeyDB, an easy-to-use mock storage system for weeding out such
bugs. MonkeyDB uses a logical understanding of isolation levels to provide (randomized) coverage
of all possible weak behaviors. Our evaluation reveals that using MonkeyDB is very effective at
breaking assertions that would otherwise hold under a strong isolation level.
In future work, we would like to explore strategies other than just random selection to resolve

read operations, for instance, biasing towards łolderž values, or enumerative techniques that
guarantee a distinct behavior on each run. So far though, random sets a strong baseline. Another
interesting line of work would be to support workloads where transactions can have different

isolation levels. This first requires a formalization of the semantics of mixed isolation levels that is
faithful to existing implementations. An axiomatic formalization should then be easy to integrate
with MonkeyDB.

ACKNOWLEDGMENTS

This work is supported in part by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 678177).

REFERENCES

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.

2015. Stateless Model Checking for TSO and PSO. In Tools and Algorithms for the Construction and Analysis of Systems

- 21st International Conference, TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science, Vol. 9035), Christel

Baier and Cesare Tinelli (Eds.). Springer, 353ś367. https://doi.org/10.1007/978-3-662-46681-0_28

A. Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions. Technical

Report. USA.

Atul Adya, Barbara Liskov, and Patrick E. O’Neil. 2000. Generalized Isolation Level Definitions. In Proceedings of the 16th

International Conference on Data Engineering, San Diego, California, USA, February 28 - March 3, 2000, David B. Lomet

and Gerhard Weikum (Eds.). IEEE Computer Society, 67ś78. https://doi.org/10.1109/ICDE.2000.839388

Deepthi Devaki Akkoorath and Annette Bieniusa. 2016. Antidote: the highly-available geo-replicated database with strongest

guarantees. Technical Report. https://pages.lip6.fr/syncfree/attachments/article/59/antidote-white-paper.pdf

Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno M. Preguiça, Mahsa Najafzadeh, and Marc Shapiro.

2015. Putting consistency back into eventual consistency. In Proceedings of the Tenth European Conference on Computer

Systems, EuroSys 2015, Bordeaux, France, April 21-24, 2015, Laurent Réveillère, Tim Harris, and Maurice Herlihy (Eds.).

ACM, 6:1ś6:16. https://doi.org/10.1145/2741948.2741972

Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. 2019a. Checking Robustness Against Snapshot Isolation.

In Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1109/ICDE.2000.839388
https://pages.lip6.fr/syncfree/attachments/article/59/antidote-white-paper.pdf
https://doi.org/10.1145/2741948.2741972

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:25

Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11562), Isil Dillig and Serdar Tasiran (Eds.). Springer, 286ś304.

https://doi.org/10.1007/978-3-030-25543-5_17

Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. 2019b. Robustness Against Transactional Causal Consistency.

In 30th International Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands

(LIPIcs, Vol. 140), Wan J. Fokkink and Rob van Glabbeek (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

30:1ś30:18. https://doi.org/10.4230/LIPIcs.CONCUR.2019.30

Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and Patrick E. O’Neil. 1995. A Critique

of ANSI SQL Isolation Levels. In Proceedings of the 1995 ACM SIGMOD International Conference on Management of

Data, San Jose, California, USA, May 22-25, 1995, Michael J. Carey and Donovan A. Schneider (Eds.). ACM Press, 1ś10.

https://doi.org/10.1145/223784.223785

Giovanni Bernardi and Alexey Gotsman. 2016. Robustness against Consistency Models with Atomic Visibility. In 27th

International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada (LIPIcs, Vol. 59),

Josée Desharnais and Radha Jagadeesan (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 7:1ś7:15. https:

//doi.org/10.4230/LIPIcs.CONCUR.2016.7

Ranadeep Biswas and Constantin Enea. 2019a. On the complexity of checking transactional consistency. Proc. ACM Program.

Lang. 3, OOPSLA (2019), 165:1ś165:28. https://doi.org/10.1145/3360591

Ranadeep Biswas and Constantin Enea. 2019b. On the Complexity of Checking Transactional Consistency. CoRR

abs/1908.04509 (2019). arXiv:1908.04509 http://arxiv.org/abs/1908.04509

Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal. 2021a. MonkeyDB: Effectively

Testing Correctness against Weak Isolation Levels. CoRR abs/2103.02830 (2021). arXiv:2103.02830 https://arxiv.org/abs/

2103.02830

Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal. 2021b. MonkeyDB: Effectively

Testing Correctness under Weak Isolation Levels. https://doi.org/10.5281/zenodo.5504052

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,

Sachin Kulkarni, Harry C. Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkateshwaran

Venkataramani. 2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In 2013 USENIX Annual Technical

Conference, San Jose, CA, USA, June 26-28, 2013, Andrew Birrell and Emin Gün Sirer (Eds.). USENIX Association, 49ś60.

https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson

Lucas Brutschy, Dimitar I. Dimitrov, Peter Müller, and Martin T. Vechev. 2017. Serializability for eventual consistency:

criterion, analysis, and applications. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 458ś472.

http://dl.acm.org/citation.cfm?id=3009895

Lucas Brutschy, Dimitar I. Dimitrov, Peter Müller, and Martin T. Vechev. 2018. Static serializability analysis for causal

consistency. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 90ś104. https:

//doi.org/10.1145/3192366.3192415

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework for Transactional Consistency Models with

Atomic Visibility. In 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4,

2015 (LIPIcs, Vol. 42), Luca Aceto and David de Frutos-Escrig (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

58ś71. https://doi.org/10.4230/LIPIcs.CONCUR.2015.58

Andrea Cerone and Alexey Gotsman. 2018. Analysing Snapshot Isolation. J. ACM 65, 2 (2018), 11:1ś11:41. https:

//doi.org/10.1145/3152396

Transaction Processing Performance Council. 2020. TPC-C Benchmark Specification. http://tpc.org/tpc_documents_current_

versions/pdf/tpc-c_v5.11.0.pdf.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s highly available key-

value store. In Proceedings of the 21st ACM Symposium on Operating Systems Principles 2007, SOSP 2007, Steven-

son, Washington, USA, October 14-17, 2007, Thomas C. Bressoud and M. Frans Kaashoek (Eds.). ACM, 205ś220.

https://doi.org/10.1145/1294261.1294281

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-Mauroux. 2013. OLTP-Bench: An Extensible

Testbed for Benchmarking Relational Databases. Proc. VLDB Endow. 7, 4 (2013), 277ś288. https://doi.org/10.14778/

2732240.2732246

Alan D. Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, Patrick E. O’Neil, and Dennis E. Shasha. 2005. Making snapshot

isolation serializable. ACM Trans. Database Syst. 30, 2 (2005), 492ś528. https://doi.org/10.1145/1071610.1071615

MariaDB Foundation. 2020. MariaDB: An Open Source Relational Database. https://mariadb.org/.

Galera. 2020. Galera Cluster for MySQL. https://galeracluster.com/.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

https://doi.org/10.1007/978-3-030-25543-5_17
https://doi.org/10.4230/LIPIcs.CONCUR.2019.30
https://doi.org/10.1145/223784.223785
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.1145/3360591
https://arxiv.org/abs/1908.04509
http://arxiv.org/abs/1908.04509
https://arxiv.org/abs/2103.02830
https://arxiv.org/abs/2103.02830
https://arxiv.org/abs/2103.02830
https://doi.org/10.5281/zenodo.5504052
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
http://dl.acm.org/citation.cfm?id=3009895
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.4230/LIPIcs.CONCUR.2015.58
https://doi.org/10.1145/3152396
https://doi.org/10.1145/3152396
http://tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.14778/2732240.2732246
https://doi.org/10.1145/1071610.1071615
https://mariadb.org/
https://galeracluster.com/

132:26 Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and Akash Lal

Yifan Gan, Xueyuan Ren, Drew Ripberger, Spyros Blanas, and Yang Wang. 2020. IsoDiff: Debugging Anomalies Caused by

Weak Isolation. Proc. VLDB Endow. 13, 12 (July 2020), 27732786. https://doi.org/10.14778/3407790.3407860

Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I’m strong enough:

reasoning about consistency choices in distributed systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav

Bodík and Rupak Majumdar (Eds.). ACM, 371ś384. https://doi.org/10.1145/2837614.2837625

Java Platform. [n. d.]. JDBC: Java Database Connectivity API. https://en.wikipedia.org/wiki/Java_Database_Connectivity.

Jepsen. 2020. Distributed Systems Testing. https://jepsen.io/.

Jepsen Nemesis. 2021. Tutorial on Jepsen nemesis variants. https://jepsen-io.github.io/jepsen/jepsen.nemesis.html.

Sudhir Jorwekar, Alan D. Fekete, Krithi Ramamritham, and S. Sudarshan. 2007. Automating the Detection of Snapshot

Isolation Anomalies. In Proceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna,

Austria, September 23-27, 2007, Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer,

Anand Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and

Erich J. Neuhold (Eds.). ACM, 1263ś1274. http://www.vldb.org/conf/2007/papers/industrial/p1263-jorwekar.pdf

Gowtham Kaki, Kapil Earanky, K. C. Sivaramakrishnan, and Suresh Jagannathan. 2018. Safe replication through bounded

concurrency verification. Proc. ACM Program. Lang. 2, OOPSLA (2018), 164:1ś164:27. https://doi.org/10.1145/3276534

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2018. Effective stateless model checking

for C/C++ concurrency. Proc. ACM Program. Lang. 2, POPL (2018), 17:1ś17:32. https://doi.org/10.1145/3158105

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (1978),

558ś565. https://doi.org/10.1145/359545.359563

Cheng Li, João Leitão, Allen Clement, Nuno M. Preguiça, Rodrigo Rodrigues, and Viktor Vafeiadis. 2014. Automating the

Choice of Consistency Levels in Replicated Systems. In 2014 USENIX Annual Technical Conference, USENIX ATC ’14,

Philadelphia, PA, USA, June 19-20, 2014, Garth Gibson and Nickolai Zeldovich (Eds.). USENIX Association, 281ś292.

https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2

Christopher Lidbury and Alastair F. Donaldson. 2017. Dynamic race detection for C++11. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe

Castagna and Andrew D. Gordon (Eds.). ACM, 443ś457. https://doi.org/10.1145/3009837.3009857

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t settle for eventual: scalable

causal consistency for wide-area storage with COPS. In Proceedings of the 23rd ACM Symposium on Operating Systems

Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011, Ted Wobber and Peter Druschel (Eds.). ACM, 401ś416.

https://doi.org/10.1145/2043556.2043593

Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song, Wendy Tobagus, Sanjeev Kumar, and Wyatt

Lloyd. 2015. Existential Consistency: Measuring and Understanding Consistency at Facebook. In Proceedings of the 25th

Symposium on Operating Systems Principles (Monterey, California) (SOSP ’15). Association for Computing Machinery,

New York, NY, USA, 295310. https://doi.org/10.1145/2815400.2815426

Microsoft. 2020. Azure Cosmos DB Local Emulator. https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator.

Microsoft Coyote. 2019. Fearless coding for reliable asynchronous software. https://github.com/microsoft/coyote.

Madanlal Musuvathi and Shaz Qadeer. 2008. Fair stateless model checking. In Proceedings of the ACM SIGPLAN 2008

Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and

Saman P. Amarasinghe (Eds.). ACM, 362ś371. https://doi.org/10.1145/1375581.1375625

Kartik Nagar and Suresh Jagannathan. 2018. Automated Detection of Serializability Violations Under Weak Consistency.

In 29th International Conference on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China (LIPIcs,

Vol. 118), Sven Schewe and Lijun Zhang (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 41:1ś41:18. https:

//doi.org/10.4230/LIPIcs.CONCUR.2018.41

Kartik Nagar, Prasita Mukherjee, and Suresh Jagannathan. 2020. Semantics, Specification, and Bounded Verification of

Concurrent Libraries in Replicated Systems. In Computer Aided Verification - 32nd International Conference, CAV 2020, Los

Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 12224), Shuvendu K. Lahiri

and Chao Wang (Eds.). Springer, 251ś274. https://doi.org/10.1007/978-3-030-53288-8_13

Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. 2020. Proving the Safety of Highly-Available Distributed Objects. In

Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture

Notes in Computer Science, Vol. 12075), Peter Müller (Ed.). Springer, 544ś571. https://doi.org/10.1007/978-3-030-44914-

8_20

Brian Norris and Brian Demsky. 2013. CDSchecker: checking concurrent data structures written with C/C++ atomics. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &

Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, Antony L. Hosking, Patrick Th.

Eugster, and Cristina V. Lopes (Eds.). ACM, 131ś150. https://doi.org/10.1145/2509136.2509514

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

https://doi.org/10.14778/3407790.3407860
https://doi.org/10.1145/2837614.2837625
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://jepsen.io/
https://jepsen-io.github.io/jepsen/jepsen.nemesis.html
http://www.vldb.org/conf/2007/papers/industrial/p1263-jorwekar.pdf
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3158105
https://doi.org/10.1145/359545.359563
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2
https://doi.org/10.1145/3009837.3009857
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2815400.2815426
https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator
https://github.com/microsoft/coyote
https://doi.org/10.1145/1375581.1375625
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.1007/978-3-030-53288-8_13
https://doi.org/10.1007/978-3-030-44914-8_20
https://doi.org/10.1007/978-3-030-44914-8_20
https://doi.org/10.1145/2509136.2509514

MonkeyDB: Effectively Testing Correctness under Weak Isolation Levels 132:27

Burcu Kulahcioglu Ozkan. 2020. Verifying Weakly Consistent Transactional Programs Using Symbolic Execution. In

Networked Systems - 8th International Conference, NETYS 2020, Marrakech, Morocco, June 3-5, 2020, Proceedings (Lecture

Notes in Computer Science, Vol. 12129), Chryssis Georgiou and Rupak Majumdar (Eds.). Springer, 261ś278. https:

//doi.org/10.1007/978-3-030-67087-0_17

Christos H. Papadimitriou. 1979. The serializability of concurrent database updates. J. ACM 26, 4 (1979), 631ś653.

https://doi.org/10.1145/322154.322158

Andrew Pavlo. 2017. What Are We Doing With Our Lives? Nobody Cares About Our Concurrency Control Research. In

Proceedings of the 2017 ACM International Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17).

Association for Computing Machinery, New York, NY, USA, 3. https://doi.org/10.1145/3035918.3056096

Jos Rolando Guay Paz. 2018. Microsoft Azure Cosmos DB Revealed: A Multi-Modal Database Designed for the Cloud (1st ed.).

Apress, USA.

Kia Rahmani. 2018. Lifting Jepsen Tests to the Application Level. https://kiarahmani.github.io/posts/2018/12/jepsen/.

Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan. 2019. CLOTHO: Directed Test Generation

for Weakly Consistent Database Systems. Proc. ACM Program. Lang. 3, OOPSLA, Article 117 (Oct. 2019), 28 pages.

https://doi.org/10.1145/3360543

K. C. Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative programming over eventually consistent

data stores. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation,

Portland, OR, USA, June 15-17, 2015, David Grove and Stephen M. Blackburn (Eds.). ACM, 413ś424. https://doi.org/10.

1145/2737924.2737981

Twissandra. Accessed November 1, 2020. Twitter clone on Cassandra. https://github.com/twissandra/twissandra

Todd Warszawski and Peter Bailis. 2017. ACIDRain: Concurrency-Related Attacks on Database-Backed Web Applications.

In Proceedings of the 2017 ACM International Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17).

Association for Computing Machinery, New York, NY, USA, 520. https://doi.org/10.1145/3035918.3064037

ANSI X3. 1992. 135-1992. American National Standard for Information Systems-Database Language-SQL. Technical Report.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 132. Publication date: October 2021.

https://doi.org/10.1007/978-3-030-67087-0_17
https://doi.org/10.1007/978-3-030-67087-0_17
https://doi.org/10.1145/322154.322158
https://doi.org/10.1145/3035918.3056096
https://kiarahmani.github.io/posts/2018/12/jepsen/
https://doi.org/10.1145/3360543
https://doi.org/10.1145/2737924.2737981
https://doi.org/10.1145/2737924.2737981
https://github.com/twissandra/twissandra
https://doi.org/10.1145/3035918.3064037

	Abstract
	1 Introduction
	2 Programming Language
	3 Isolation Levels for Key-Value Stores
	3.1 Histories
	3.2 Axiomatic Framework

	4 Operational Semantics for PKV
	4.1 Definition of the Operational Semantics
	4.2 Correctness of the Operational Semantics

	5 Compiling SQL to Key-Value API
	6 Implementation
	7 Evaluation: Microbenchmarks
	7.1 Applications
	7.2 Assertion Checking
	7.3 Coverage

	8 Evaluation: OLTP Workloads
	8.1 TPC-C
	8.2 SmallBank, Voter, and Wikipedia

	9 Comparison to Other Testing Techniques
	10 Related Work
	11 Conclusions and future work
	Acknowledgments
	References

