10 research outputs found

    Large interlayer Dzyaloshinskii-Moriya interactions across Ag-layers

    No full text
    Abstract Seeking to enhance the strength of the interlayer Dzyaloshinskii-Moriya interaction (IL-DMI) through a combination of atomic and Rashba type spin-orbit coupling (SOC) we studied the strength and the thickness evolution of effective interlayer coupling in Co/Ag/Co trilayers by means of surface sensitive magneto-optical measurements that take advantage of the light penetration depth. Here, we report the observation of oscillatory, thickness-dependent chiral interaction between ferromagnetic layers. Despite the weakness of the Ag atomic SOC, the IL-DMI in our trilayers is orders of magnitude larger than that of known systems using heavy metals as a spacer except of recently reported −0.15 mJ/m2 in Co/Pt/Ru(t)/Pt/Co and varies between ≈ ±0.2 mJ/m2. In contrast to known multilayers Co/Ag/Co promotes in-plane chirality between magnetic layers. The strength of IL-DMI opens up new routes for design of three-dimensional chiral spin structures combining intra- and interlayer DMI and paves the way for enhancements of the DMI strength

    Rotating edge-field driven processing of chiral spin textures in racetrack devices

    Get PDF
    Topologically distinct magnetic structures like skyrmions, domain walls, and the uniformly magnetized state have multiple applications in logic devices, sensors, and as bits of information. One of the most promising concepts for applying these bits is the racetrack architecture controlled by electric currents or magnetic driving fields. In state-of-the-art racetracks, these fields or currents are applied to the whole circuit. Here, we employ micromagnetic and atomistic simulations to establish a concept for racetrack memories free of global driving forces. Surprisingly, we realize that mixed sequences of topologically distinct objects can be created and propagated over far distances exclusively by local rotation of magnetization at the sample boundaries. We reveal the dependence between the chirality of the rotation and the direction of propagation and define the phase space where the proposed procedure can be realized. The advantages of this approach are the exclusion of high current and field densities as well as its compatibility with an energy-efficient three-dimensional design.Comment: 23 pages, 7 figure

    Quasiantiferromagnetic 120° Néel state in two-dimensional clusters of dipole-quadrupole-interacting particles on a hexagonal lattice

    No full text
    The magnetostatic interactions of colloidal particles, capped with radially magnetized Co/Pt multilayers, are modeled. Motivated by experiment the particles are arranged in microscopic two-dimensional clusters on a hexagonal lattice and are free to rotate. The thermodynamically stable states of clusters containing up to 108 particles are calculated theoretically by means of Monte Carlo simulations in the framework of multipole expansion. It is shown analytically that radially magnetized hemispheres have higher-order multipole moments beyond the dipole. Depending on geometrical details also even order moments appear. The even order moments break the inversion symmetry of the magnetic potential of a single particle. For a specific mixing ratio of dipole and quadrupole moments, the experimentally observed antiferromagnetic 120° Néel state in the clusters is found
    corecore