12 research outputs found

    Interplay between magnetic and spatial order in quasicrystals

    Get PDF
    The stable magnetization configurations of antiferromagnets on quasiperiodic tilings are investigated theoretically. The exchange coupling is assumed to decrease exponentially with the distance between magnetic moments. It is demonstrated that the combination of geometric frustration and the quasiperiodic order of atoms leads to complicated non-collinear ground states. The structure can be divided into subtilings of different energies. The symmetry of the subtilings depends on the quasiperiodic order of magnetic moments. The subtilings are spatially ordered. However, the magnetic ordering of the subtilings in general does not correspond to their spatial arrangements. While subtilings of low energy are magnetically ordered, those of high energy can be completely disordered due to local magnetic frustration

    In search of multipolar order on the Penrose tiling

    Full text link
    Based on Monte Carlo calculations, multipolar ordering on the Penrose tiling, relevant for two-dimensional molecular adsorbates on quasicrystalline surfaces and for nanomagnetic arrays, has been analyzed. These initial investigations are restricted to multipolar rotors of rank one through four - described by spherical harmonics Ylm with l=1...4 and restricted to m=0 - positioned on the vertices of the rhombic Penrose tiling. At first sight, the ground states of odd-parity multipoles seem to exhibit long-range multipolar order, indicated by the appearance of a superstructure in the form of the decagonal Hexagon-Boat-Star tiling, in agreement with previous investigations of dipolar systems. Yet careful analysis establishes that long-range multipolar order is absent in all cases investigated here, and only short-range order exists. This result should be taken as a warning for any future analysis of order in either real or simulated arrangements of multipoles on quasiperiodic templates

    Photonic properties of metallic-mean quasiperiodic chains

    No full text
    The light propagation through a stack of two media with different refractive indices, which are aligned according to different quasiperiodic sequences determined by metallic means, is studied using the transfer matrix method. The focus lies on the investigation of the influence of the underlying quasiperiodic sequence as well as the dependence of the transmission on the frequency, the incidence angle of the light wave and different ratios of the refractive indices. In contrast to a periodically aligned stack we find complete transmission for the quasiperiodic systems for a wide range of different refractive indices for small incidence angles. Additional bands of moderate transmission occur for frequencies in the range of the photonic band gaps of the periodic system. Further, for fixed indices of refraction we find a range of almost perfect transmission for angles close to the angle of total reflection, which is caused by the bending of photonic transmission bands towards higher frequencies for increasing incidence angles. Comparing with the results of a periodic stack the quasiperiodicity seems to have only an influence in the region around the midgap frequency of a periodic stack. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010
    corecore