612 research outputs found

    Two-step Doppler cooling of a three-level ladder system with an intermediate metastable level

    Full text link
    Doppler laser cooling of a three-level ladder system using two near-resonant laser fields is analyzed in the case of the intermediate level being metastable while the upper level is short-lived. Analytical as well as numerical results for e.g. obtainable scattering rates and achievable temperatures are presented. When appropriate, comparisons with two-level single photon Doppler laser cooling is made. These results are relevant to recent experimental Doppler laser cooling investigations addressing intercombination lines in alkali-earth metal atoms and quadrupole transitions in alkali-earth metal ions.Comment: accepted by Phys Rev

    Dark resonances as a probe for the motional state of a single ion

    Full text link
    Single, rf-trapped ions find various applications ranging from metrology to quantum computation. High-resolution interrogation of an extremely weak transition under best observation conditions requires an ion almost at rest. To avoid line-broadening effects such as the second order Doppler effect or rf heating in the absence of laser cooling, excess micromotion has to be eliminated as far as possible. In this work the motional state of a confined three-level ion is probed, taking advantage of the high sensitivity of observed dark resonances to the trapped ion's velocity. Excess micromotion is controlled by monitoring the dark resonance contrast with varying laser beam geometry. The influence of different parameters such as the cooling laser intensity has been investigated experimentally and numerically

    Evaluation of the ultimate performances of a Ca+ single-ion frequency standard

    Full text link
    We numerically evaluate the expected performances of an optical frequency standard at 729 nm based on a single calcium ion. The frequency stability is studied through the Allan deviation and its dependence on the excitation method (single Rabi pulse or two Ramsey pulses schemes) and the laser linewidth are discussed. The minimum Allan deviation that can be expected is estimated to σy(τ)≈2.5×10−15/τ\sigma_y(\tau) \approx 2.5\times 10^{-15}/\sqrt{\tau} with τ\tau the integration time. The frequency shifts induced by the environmental conditions are evaluated to minimize the uncertainty of the proposed standard by chosing the most suited environment for the ion. If using the odd isotope 43^{43}Ca+^{+} and a vessel cooled to 77 K, the expected relative shift is −2×10−16-2 \times 10^{-16} with an uncertainty of ±4×10−16\pm 4\times10^{-16}, mainly due to the quadrupole shift induced by the unknown static electric field gradient .Comment: soumis le 27/07/04 a Physics Letters

    CIV Absorption From Galaxies in the Process of Formation

    Full text link
    We investigate the heavy element QSO absorption systems caused by gas condensations at high redshift which evolve into galaxies with circular velocity of 100 to 200 km/s at the present epoch. Artificial QSO spectra were generated for a variety of lines-of-sight through regions of the universe simulated with a hydrodynamics code. The CIV and HI absorption features in these spectra closely resemble observed CIV and HI absorption systems over a wide range in column density. CIV absorption complexes with multiple-component structure and velocity spreads up to about 600 km/s are found. The broadest systems are caused by lines-of-sight passing through groups of protogalactic clumps with individual velocity dispersions of less than 150 km/s aligned along filamentary structures. The temperature of most of the gas does not take the photoionization equilibrium value. This invalidates density and size estimates derived from thermal equilibrium models. Consequences for metal abundance determinations are briefly discussed. We predict occasional exceptionally large ratios of CIV to HI column density (up to a third) for lines-of-sight passing through compact halos of hot gas with temperature close to 3 10^5 K. Our model may be able to explain both high-ionization multi-component heavy-element absorbers and damped Lyman alpha systems as groups of small protogalactic clumps.Comment: 13 pages, uuencoded postscript file, 4 figures included submitted to ApJ (Letters); complete version also available at http://www.mpa-garching.mpg.de/Galaxien/prep.htm

    Terahertz frequency standard based on three-photon coherent population trapping

    Full text link
    A scheme for a THz frequency standard based on three-photon coherent population trapping in stored ions is proposed. Assuming the propagation directions of the three lasers obey the phase matching condition, we show that stability of few 10−14^{-14} at one second can be reached with a precision limited by power broadening to 10−1110^{-11} in the less favorable case. The referenced THz signal can be propagated over long distances, the useful information being carried by the relative frequency of the three optical photons.Comment: article soumis a PRL le 21 mars 2007, accepte le 10 mai, version 2 (24/05/2007

    Des modèles biologiques à l'amélioration des plantes

    Get PDF
    • …
    corecore