931 research outputs found
Surface electronic properties of undoped InAlN alloys
The variation in surface electronic properties of undoped c-plane InxAl1−xN alloys has been investigated across the composition range using a combination of high-resolution x-ray photoemission spectroscopy and single-field Hall effect measurements. For the In-rich alloys, electron accumulation layers, accompanied by a downward band bending, are present at the surface, with a decrease to approximately flatband conditions with increasing Al composition. However, for the Al-rich alloys, the undoped samples were found to be insulating with approximate midgap pinning of the surface Fermi level observed
Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}
Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied
during room temperature annealing following heat treatment. The superconducting
T_c, dc resistivity, and low-energy optical conductivity recover slowly,
implying a long relaxation time for the carrier density. Short relaxation times
are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon
-- and the charge transfer band. Monte Carlo simulations suggest that these two
relaxation rates are related to two length scales corresponding to local oxygen
ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure
Layering transitions for adsorbing polymers in poor solvents
An infinite hierarchy of layering transitions exists for model polymers in
solution under poor solvent or low temperatures and near an attractive surface.
A flat histogram stochastic growth algorithm known as FlatPERM has been used on
a self- and surface interacting self-avoiding walk model for lengths up to 256.
The associated phases exist as stable equilibria for large though not infinite
length polymers and break the conjectured Surface Attached Globule phase into a
series of phases where a polymer exists in specified layer close to a surface.
We provide a scaling theory for these phases and the first-order transitions
between them.Comment: 4 pages, 4 figure
Intrinsic electronic superconducting phases at 60 K and 90 K in double-layer YBaCuO
We study superconducting transition temperature () of oxygen-doped
double-layer high-temperature superconductors YBaCuO (0
1) as a function of the oxygen dopant concentration
() and planar hole-doping concentration (). We find that ,
while clearly influenced by the development of the chain ordering as seen in
the plot, lies on a universal curve originating at the
critical hole concentration () = 1/16 in the plot.
Our analysis suggests that the universal behavior of () can be
understood in terms of the competition and collaboration of chemical-phases and
electronic-phases that exist in the system. We conclude that the global
superconductivity behavior of YBaCuO as a function of
doping is electronically driven and dictated by pristine electronic phases at
magic doping numbers that follow the hierarchical order based on , such as
2 , 3 and 4 . We find that there are
at least two intrinsic electronic superconducting phases of = 60 K at 2
= 1/8 and = 90 K at 3 = 3/16.Comment: 4 pages, 2 figure
N incorporation and associated localized vibrational modes in GaSb
We present results of electronic structure calculations on the N-related localized vibrational modes in the dilute nitride alloy GaSb1−xNx. By calculating the formation energies of various possible N incorporation modes in the alloy, we determine the most favorable N configurations, and we calculate their vibrational mode frequencies using density functional theory under the generalized gradient approximation to electron exchange and correlation, including the effects of the relativistic spin-orbit interactions. For a single N impurity, we find substitution on an Sb site, NSb, to be most favorable, and for a two-N-atom complex, we find the N-N split interstitial on an Sb site to be most favorable. For these defects, as well as, for comparison, defects comprising two N atoms on neighboring Sb sites and a N-Sb split interstitial on an Sb site, we find well-localized vibration modes (LVMs), which should be experimentally observable. The frequency of the triply degenerate LVM associated with NSb is determined to be 427.6 cm−1. Our results serve as a guide to future experimental studies to elucidate the incorporation of small concentrations of N in GaSb, which is known to lead to a reduction of the band gap and opens the possibility of using the material for long-wavelength applications
Drivers of success in implementing sustainable tourism policies in urban areas
The existing literature in the field of sustainable tourism highlights a number of barriers that impede the implementation of policies in this area. Yet, not many studies have so far considered the factors that would contribute to putting this concept into practice, and few address the case of urban areas. The concept of sustainability has only received limited attention in urban tourism research, even though large cities are recognised as one of the most important tourist destinations that attract vast numbers of visitors. Adopting a case study approach, this paper discusses a number of drivers of success identified by policy-makers in London to contribute to the implementation of sustainable tourisms policies at the local level, and briefly looks at the relationship between these drivers and the constraints perceived by the respondents to hinder the implementation of such policies in practice. These findings may help policy-makers in other large cities to successfully develop and implement policies towards sustainable development of tourism in their area
Surface critical behaviour of the Interacting Self-Avoiding Trail on the square lattice
The surface critical behaviour of the interacting self-avoiding trail is
examined using transfer matrix methods coupled with finite-size scaling.
Particular attention is paid to the critical exponents at the ordinary and
special points along the collapse transition line. The phase diagram is also
presented.Comment: Journal of Physics A (accepted
Valence band offset of the ZnO/AlN heterojunction determined by X-ray photoemission spectroscopy
The valence band offset of ZnO/AlN heterojunctions is determined by high resolution x-ray photoemission spectroscopy. The valence band of ZnO is found to be 0.43±0.17 eV below that of AlN. Together with the resulting conduction band offset of 3.29±0.20 eV, this indicates that a type-II (staggered) band line up exists at the ZnO/AlN heterojunction. Using the III-nitride band offsets and the transitivity rule, the valence band offsets for ZnO/GaN and ZnO/InN heterojunctions are derived as 1.37 and 1.95 eV, respectively, significantly higher than the previously determined values
The N-end rule pathway is a sensor of heme
The conjugation of arginine, by arginyl-transferase, to N-terminal aspartate, glutamate or oxidized cysteine is a part of the N-end rule pathway of protein degradation. We report that arginyl-transferase of either the mouse or the yeast Saccharomyces cerevisiae is inhibited by hemin (Fe3+-heme). Furthermore, we show that hemin inhibits arginyl-transferase through a redox mechanism that involves the formation of disulfide between the enzyme's Cys-71 and Cys-72 residues. Remarkably, hemin also induces the proteasome-dependent degradation of arginyl-transferase in vivo, thus acting as both a "stoichiometric" and "catalytic" down-regulator of the N-end rule pathway. In addition, hemin was found to interact with the yeast and mouse E3 ubiquitin ligases of the N-end rule pathway. One of substrate-binding sites of the yeast N-end rule's ubiquitin ligase UBR1 targets CUP9, a transcriptional repressor. This site of UBR1 is autoinhibited but can be allosterically activated by peptides that bear destabilizing N-terminal residues and interact with two other substrate-binding sites of UBR1. We show that hemin does not directly occlude the substrate-binding sites of UBR1 but blocks the activation of its CUP9-binding site by dipeptides. The N-end rule pathway, a known sensor of short peptides, nitric oxide, and oxygen, is now a sensor of heme as well. One function of the N-end rule pathway may be to coordinate the activities of small effectors, both reacting to and controlling the redox dynamics of heme, oxygen, nitric oxide, thiols, and other compounds, in part through conditional degradation of specific transcription factors and G protein regulators
Force-induced desorption of a linear polymer chain adsorbed on an attractive surface
We consider a model of self-avoiding walk on a lattice with on-site repulsion
and an attraction for every vertex of the walk visited on the surface to study
force-induced desorption of a linear polymer chain adsorbed on an attractive
surface and use the exact enumeration technique for analyzing how the critical
force for desorption depends on the temperature. The curve
gives the boundary separating the adsorbed phase from the desorbed phase. Our
results show that in two dimensions where surface is a line the force
increases monotonically as temperature is lowered and becomes almost constant
at very low temperatures. In case of three-dimensions we, however, find
re-entrance, i. e. goes through a maximum as temperature is lowered.
The behaviour of the polymer chain at different values of temperature and force
is examined by calculating the probability distribution of the height from the
surface of the vertex at which external force is applied.Comment: Preprint 15 pages with 8figures and two tables. The file table-2d.ps
and table-3d.ps lists C_N(Ns,h) for given N with all possible Ns and h in two
and three dimension
- …