12 research outputs found

    Event-Related Potentials for the Study of Cognition

    Get PDF
    Despite the vast literature on event-related potentials (ERPs), many clinical professionals are still unaware of the huge variety of possible applications they offer. The aim of this chapter is not to show the classical use of ERPs, focused on analyzing the first steps of information processing (sensory pathways). On the contrary, this chapter will be focused on the use of these ERPs in the assessment of cognitive function. In particular, this chapter is mainly focused on the use of ERPs to better understand the neural bases of cognitive impairment from the electrical activity of the brain. Describing all the possible ERP components and their cognitive meaning is a huge endeavor, and this chapter will only be focused on three of them: contingent negative variation (CNV), mismatch negativity (MMN), and P300. To improve the reader’s knowledge about these ERPs in cognition, a specific description will be given about the stimulation required to obtain the specific component, the topography, and latency shown. Moreover, a description of the neurophysiological bases of the component, its relationship with psychological processes and neural sources will be also included. Pathological alterations suffered by the component will also be briefly described

    Differential cognitive impairment for diverse forms of multiple sclerosis

    Get PDF
    BACKGROUND: Cognitive impairment is a common feature in multiple sclerosis (MS) patients and occurs in 60% of all cases. Unfortunately, neurological examination does not always agree with the neuropsychological evaluation in determining the cognitive profile of the patient. On the other hand, psychophysiological techniques such as event-related potentials (ERPs) can help in evaluating cognitive impairment in different pathologies. Behavioural responses and EEG signals were recorded during the experiment in three experimental groups: 1) a relapsing-remitting group (RRMS), 2) a benign multiple sclerosis group (BMS) and 3) a Control group. The paradigm employed was a spatial attention task with central cues (Posner experiment). The main aim was to observe the differences in the performance (behavioural variables) and in the latency and amplitude of the ERP components among these groups. RESULTS: Our data indicate that both MS groups showed poorer task performance (longer reaction times and lower percentage of correct responses), a latency delay for the N1 and P300 component, and a different amplitude for the frontal N1. Moreover, the deficit in the BMS group, indexed by behavioural and pyschophysiological variables, was more pronounced compared to the RRMS group. CONCLUSION: The present results suggest a cognitive impairment in the information processing in all of these patients. Comparing both pathological groups, cognitive impairment was more accentuated in the BMS group compared to the RMSS group. This suggests a silent deterioration of cognitive skills for the BMS that is not usually treated with pharmacological or neuropsychological therapy

    Cluster analysis of behavioural and event-related potentials during a contingent negative variation paradigm in remitting-relapsing and benign forms of multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Event-related potentials (ERPs) may be used as a highly sensitive way of detecting subtle degrees of cognitive dysfunction. On the other hand, impairment of cognitive skills is increasingly recognised as a hallmark of patients suffering from multiple sclerosis (MS). We sought to determine the psychophysiological pattern of information processing among MS patients with the relapsing-remitting form of the disease and low physical disability considered as two subtypes: 'typical relapsing-remitting' (RRMS) and 'benign MS' (BMS). Furthermore, we subjected our data to a cluster analysis to determine whether MS patients and healthy controls could be differentiated in terms of their psychophysiological profile.</p> <p>Methods</p> <p>We investigated MS patients with RRMS and BMS subtypes using event-related potentials (ERPs) acquired in the context of a Posner visual-spatial cueing paradigm. Specifically, our study aimed to assess ERP brain activity in response preparation (contingent negative variation -CNV) and stimuli processing in MS patients. Latency and amplitude of different ERP components (P1, eN1, N1, P2, N2, P3 and late negativity -LN) as well as behavioural responses (reaction time -RT; correct responses -CRs; and number of errors) were analyzed and then subjected to cluster analysis.</p> <p>Results</p> <p>Both MS groups showed delayed behavioural responses and enhanced latency for long-latency ERP components (P2, N2, P3) as well as relatively preserved ERP amplitude, but BMS patients obtained more important performance deficits (lower CRs and higher RTs) and abnormalities related to the latency (N1, P3) and amplitude of ERPs (eCNV, eN1, LN). However, RRMS patients also demonstrated abnormally high amplitudes related to the preparation performance period of CNV (cCNV) and post-processing phase (LN). Cluster analyses revealed that RRMS patients appear to make up a relatively homogeneous group with moderate deficits mainly related to ERP latencies, whereas BMS patients appear to make up a rather more heterogeneous group with more severe information processing and attentional deficits.</p> <p>Conclusions</p> <p>Our findings are suggestive of a slowing of information processing for MS patients that may be a consequence of demyelination and axonal degeneration, which also seems to occur in MS patients that show little or no progression in the physical severity of the disease over time.</p

    Quantitative electroencephalography reveals different physiological profiles between benign and remitting-relapsing multiple sclerosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A possible method of finding physiological markers of multiple sclerosis (MS) is the application of EEG quantification (QEEG) of brain activity when the subject is stressed by the demands of a cognitive task. In particular, modulations of the spectral content that take place in the EEG of patients with multiple sclerosis remitting-relapsing (RRMS) and benign multiple sclerosis (BMS) during a visuo-spatial task need to be observed.</p> <p>Methods</p> <p>The sample consisted of 19 patients with RRMS, 10 with BMS, and 21 control subjects. All patients were free of medication and had not relapsed within the last month. The power spectral density (PSD) of different EEG bands was calculated by Fast-Fourier-Transformation (FFT), those analysed being delta, theta, alpha, beta and gamma. Z-transformation was performed to observe individual profiles in each experimental group for spectral modulations. Lastly, correlation analyses was performed between QEEG values and other variables from participants in the study (age, EDSS, years of evolution and cognitive performance).</p> <p>Results</p> <p>Nearly half (42%) the RRMS patients showed a statistically significant increase of two or more standard deviations (SD) compared to the control mean value for the beta-2 and gamma bands (F = 2.074, p = 0.004). These alterations were localized to the anterior regions of the right hemisphere, and bilaterally to the posterior areas of the scalp. None of the BMS patients or control subjects had values outside the range of ± 2 SD. There were no significant correlations between these values and the other variables analysed (age, EDSS, years of evolution or behavioural performance).</p> <p>Conclusion</p> <p>During the attentional processing, changes in the high EEG spectrum (beta-2 and gamma) in MS patients exhibit physiological alterations that are not normally detected by spontaneous EEG analysis. The different spectral pattern between pathological and controls groups could represent specific changes for the RRMS patients, indicative of compensatory mechanisms or cortical excitatory states representative of some phases during the RRMS course that are not present in the BMS group.</p

    Attentional neural networks impairment in healthy aging

    No full text
    Introduction. Diverse evidences have shown that the process of natural aging causes a decline in different cognitive functions, including among them the attentional process. Aim. To determine how the healthy aging affects to the different attentional networks. Subjects and methods. Two groups: young subjects (32.5 +/- 9.7 years) and an elderly group (62.7 +/- 4.7 years). As instrument to evaluate the attention process the ANT (Attention Network Test) was used. Results. Highly significant differences were observed for all conditions involved in the ANT (no cue, center cue, spatial cue, congruent and incongruent) between both groups (p <0.001). As for the analysis of network effects, no one showed differences between the two groups. Considering the block variable, the post hoc analysis showed that the orienting network for the young subjects exhibited a normal benefit in the first block while the elderly group don't show that benefit caused by the deficiency using spatial cues. Moreover, the alerting network showed a bigger effect in the first block regarding the second one in the older adults and the opposed effect for the executive and orienting network was observed. Conclusions. The obtained data show that a decrease exists in the speed processing in the elderly group. In the orienting network seems that the older adults require a bigger training period to use the spatial cues, although later on, they can benefit from the same cues almost at the same level that the young subjects

    Attentional neural networks impairment in healthy aging

    No full text
    Introduction. Diverse evidences have shown that the process of natural aging causes a decline in different cognitive functions, including among them the attentional process. Aim. To determine how the healthy aging affects to the different attentional networks. Subjects and methods. Two groups: young subjects (32.5 +/- 9.7 years) and an elderly group (62.7 +/- 4.7 years). As instrument to evaluate the attention process the ANT (Attention Network Test) was used. Results. Highly significant differences were observed for all conditions involved in the ANT (no cue, center cue, spatial cue, congruent and incongruent) between both groups (p <0.001). As for the analysis of network effects, no one showed differences between the two groups. Considering the block variable, the post hoc analysis showed that the orienting network for the young subjects exhibited a normal benefit in the first block while the elderly group don't show that benefit caused by the deficiency using spatial cues. Moreover, the alerting network showed a bigger effect in the first block regarding the second one in the older adults and the opposed effect for the executive and orienting network was observed. Conclusions. The obtained data show that a decrease exists in the speed processing in the elderly group. In the orienting network seems that the older adults require a bigger training period to use the spatial cues, although later on, they can benefit from the same cues almost at the same level that the young subjects
    corecore