16 research outputs found

    Responsive glyco-poly(2-oxazoline)s: synthesis, cloud point tuning, and lectin binding

    Get PDF
    A new sugar-substituted 2-oxazoline monomer was prepared using the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Its copolymerization with 2-ethyl-2-oxazoline as well as 2-(dec-9-enyl)-2-oxazoline, yielding well-defined copolymers with the possibility to tune the properties by thiol-ene "click" reactions, is described. Extensive solubility studies on the corresponding glycocopolymers demonstrated that the lower critical solution temperature behavior and pH-responsiveness of these copolymers can be adjusted in water and phosphate-buffered saline (PBS) depending on the choice of the thiol. By conjugation of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose and subsequent deprotection of the sugar moieties, the hydrophilicity of the copolymer could be increased significantly, allowing a cloud-point tuning in the physiological range. Furthermore, the binding capability of the glycosylated copoly(2-oxazoline) to concanavalin A was investigated

    Site-directed conjugation of "Clicked" glycopolymers to form glycoprotein mimics: Binding to mammalian lectin and induction of immunological function

    No full text
    Synthesis of well-defined neoglycopolymer-protein biohybrid materials and a preliminary study focused on their ability of binding mammalian lectins and inducing immunological function is reported. Crucial intermediates for their preparation are well-defined maleimide-terminated neoglycopolymers (M-n = 8-30 kDa; M-w/M-n = 1.20-1.28) presenting multiple copies of mannose epitope units, obtained by combination of transition-metal-mediated living radical polymerization (TMM LRP) and Huisgen [2+3] cycloaddition. Bovine serum albumin (BSA) was employed as single thiol-containing model protein, and the resulting bioconjugates were purified following two independent protocols and characterized by circular dichroism (CD) spectroscopy, SDS PAGE, and SEC HPLC. The versatility of the synthetic strategy presented in this work was demonstrated by preparing a small library of conjugating glycopolymers that only differ from each other for their relative epitope density were prepared by coclicking of appropriate mixtures of mannopyranoside and galactopyranoside azides to the same polyalkyne scaffold intermediate. Surface plasmon resonance binding studies carried out using recombinant rat mannose-binding lectin (MBL) showed clear and dose-dependent MBL binding to glycopolymer-conjugated BSA. In addition, enzyme-linked immunosorbent assay (ELISA) revealed that the neoglycopolymer-protein materials described in this work possess significantly enhanced capacity to activate complement via the lectin pathway when compared with native unmodified BSA
    corecore