21 research outputs found

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Monitoring of recruitment and derecruitment by electrical impedance tomtgraphy in a model of acute lung injury

    No full text
    OBJECTIVE: To evaluate a noninvasive system for obtaining information about alveolar recruitment and derecruitment in a model of acute lung injury. DESIGN: Prospective experimental study. SETTING: Animal research laboratory. SUBJECTS: Nine anesthetized pigs. INTERVENTIONS: Electrical impedance tomography measurements were performed. Electrical impedance tomography is an imaging technique that can register the ventilation-induced impedance changes in different parts of the lung. In nine anesthetized pigs, repeated lung lavages were performed until a PaO2 of <80 mm Hg was reached. Thereafter, the lungs were recruited according to two different recruitment protocols: the open lung approach and the open lung concept. Five time points for measurements were chosen: healthy (reference), lavage (atelectasis), recruitment, derecruitment, and maintain recruited (final). MEASUREMENTS AND MAIN RESULTS: After lavage, there was a significant increase in the impedance ratio, defined as the ventilation-induced impedance changes of the anterior part of the lung divided by that of the posterior part (from 1.75 +/- 0.63 to 4.51 +/- 2.22; p <.05). The impedance ratio decreased significantly after performing the recruitment protocol (from 4.51 +/- 2.22 to 1.18 +/- 0.51). During both recruitment procedures, a steep increase in baseline impedance change was seen. Furthermore, during derecruitment, a decrease in the slope in baseline impedance change was seen in the posterior part of the lung, whereas the anterior part showed no change. CONCLUSION: Electrical impedance tomography is a technique that can show impedance changes resembling recruitment and derecruitment of alveoli in the anterior and posterior parts of the lung. Therefore, electrical impedance tomography may help in determining the optimal mechanical ventilation in a patient with acute lung injur

    Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury

    No full text
    OBJECTIVE: A new noninvasive method, electrical impedance tomography (EIT), was used to make pressure-impedance (PI) curves in a lung lavage model of acute lung injury in pigs. The lower inflection point (LIP) and the upper deflection point (UDP) were determined from these curves and from the traditional pressure-volume (PV) curves to determine whether the PI curves resemble the traditional PV curves. Furthermore, regional differences in the mentioned determinants were investigated. DESIGN: Prospective, experimental study. SETTING: Animal research laboratory. INTERVENTIONS: In nine anesthetized pigs, repeated lung lavage was performed until a Pao2 <80 torr was reached. Thereafter, an inspiratory PV curve was made using a constant flow of oxygen. During the intervention, EIT measurements were performed. MEASUREMENTS AND MAIN RESULTS: In this study, the LIP(EIT) was within 2 cm H2O of the LIP(PV). Furthermore, it was possible to visualize regional PI curves by EIT. No significant difference was found between the LIP(PV) (21.3+/-3.0 cm H2O) and the LIP(EIT) of the total lung (21.5+/-3.0 cm H2O) or the anterior parts of the lung (21.5+/-2.9 cm H2O). A significantly higher LIP (29.5+/-4.9 cm H2O) was found in the posterior parts of the lung. A UDP(PV) could be found in three animals only, whereas in all animals a UDP(EIT) could be determined from the anterior part of the lung. CONCLUSIONS: Using EIT, determination of LIP and UDP from the regional PI curves is possible. The obtained information from the regional PI curves may help in understanding alveolar recruitment. The use of this new bedside technique for clinical decision making remains to be examine
    corecore