16 research outputs found

    Solid Lubrication with MoS2: A Review

    No full text
    Molybdenum disulfide (MoS2) is one of the most broadly utilized solid lubricants with a wide range of applications, including but not limited to those in the aerospace/space industry. Here we present a focused review of solid lubrication with MoS2 by highlighting its structure, synthesis, applications and the fundamental mechanisms underlying its lubricative properties, together with a discussion of their environmental and temperature dependence. The review also includes an extensive overview of the structure and tribological properties of doped MoS2, followed by a discussion of potential future research directions

    Insights into dynamic sliding contacts from conductive atomic force microscopy.

    No full text
    Friction in nanoscale contacts is determined by the size and structure of the interface that is hidden between the contacting bodies. One approach to investigating the origins of friction is to measure electrical conductivity as a proxy for contact size and structure. However, the relationships between contact, friction and conductivity are not fully understood, limiting the usefulness of such measurements for interpreting dynamic sliding properties. Here, atomic force microscopy (AFM) was used to simultaneously acquire lattice resolution images of the lateral force and current flow through the tip-sample contact formed between a highly oriented pyrolytic graphite (HOPG) sample and a conductive diamond AFM probe to explore the underlying mechanisms and correlations between friction and conductivity. Both current and lateral force exhibited fluctuations corresponding to the periodicity of the HOPG lattice. Unexpectedly, while lateral force increased during stick events of atomic stick-slip, the current decreased exponentially. Molecular dynamics (MD) simulations of a simple model system reproduced these trends and showed that the origin of the inverse correlation between current and lateral force during atomic stick-slip was atom-atom distance across the contact. The simulations further demonstrated transitions between crystallographic orientation during slip events were reflected in both lateral force and current. These results confirm that the correlation between conduction and atom-atom distance previously proposed for stationary contacts can be extended to sliding contacts in the stick-slip regime

    Friction Anisotropy of MoS2: Effect of TipSample Contact Quality

    No full text
    Atomic-scale friction measured for a single asperity sliding on 2D materials depend on the direction of scanning relative to the material's crystal lattice. Here, nanoscale friction anisotropy of wrinkle-free bulk and monolayer MoS2 is characterized using atomic force microscopy and molecular dynamics simulations. Both techniques show 180° periodicity (2-fold symmetry) of atomic-lattice stick-slip friction vs. the tip's scanning direction with respect to the MoS2 surface. The 60° periodicity (6-fold symmetry) expected from the MoS2 surface's symmetry is only recovered in simulations where the sample is rotated, as opposed to the scanning direction changed. All observations are explained by the potential energy landscape of the tip-sample contact, in contrast with nanoscale topographic wrinkles that have been proposed previously as the source of anisotropy. These results demonstrate the importance of the tip-sample contact quality in determining the potential energy landscape and, in turn, friction at the nanoscale
    corecore