27 research outputs found

    The dynamics of cardiolipin synthesis post-mitochondrial fusion

    Get PDF
    AbstractAlteration in mitochondrial fusion may regulate mitochondrial metabolism. Since the phospholipid cardiolipin (CL) is required for function of the mitochondrial respiratory chain, we examined the dynamics of CL synthesis in growing Hela cells immediately after and 12h post-fusion. Cells were transiently transfected with Mfn-2, to promote fusion, or Mfn-2 expressing an inactive GTPase for 24h and de novo CL biosynthesis was examined immediately after or 12h post-fusion. Western blot analysis confirmed elevated Mfn-2 expression and electron microscopic analysis revealed that Hela cell mitochondrial structure was normal immediately after and 12h post-fusion. Cells expressing Mfn-2 exhibited reduced CL de novo biosynthesis from [1,3-3H]glycerol immediately after fusion and this was due to a decrease in phosphatidylglycerol phosphate synthase (PGPS) activity and its mRNA expression. In contrast, 12h post-mitochondrial fusion cells expressing Mfn-2 exhibited increased CL de novo biosynthesis from [1,3-3H]glycerol and this was due to an increase in PGPS activity and its mRNA expression. Cells expressing Mfn-2 with an inactive GTPase activity did not exhibit alterations in CL de novo biosynthesis immediately after or 12h post-fusion. The Mfn-2 mediated alterations in CL de novo biosynthesis were not accompanied by alterations in CL or monolysoCL mass. [1-14C]Oleate incorporation into CL was elevated at 12h post-fusion indicating increased CL resynthesis. The reason for the increased CL resynthesis was an increased mRNA expression of tafazzin, a mitochondrial CL resynthesis enzyme. Ceramide-induced expression of PGPS in Hela cells or in CHO cells did not alter expression of Mfn-2 indicating that Mfn-2 expression is independent of altered CL synthesis mediated by elevated PGPS. In addition, Mfn-2 expression was not altered in Hela cells expressing phospholipid scramblase-3 or a disrupted scramblase indicating that proper CL localization within mitochondria is not essential for Mfn-2 expression. The results suggest that immediately post-mitochondrial fusion CL de novo biosynthesis is “slowed down” and then 12h post-fusion it is “upregulated”. The implications of this are discussed

    BioSTEC 2017: 10th International Joint Conference on Biomedical Engineering Systems and Technologies: Proceedings Volume 5: HealthInf

    No full text
    This book contains the proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017). This conference is sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC), in cooperation with the ACM Special Interest Group on Knowledge Discovery and Data Mining (ACM SIGKDD), the EUROMICRO, the International Society for Telemedicine & eHealth (ISfTeH), the Association for the Advancement of Artificial Intelligence (AAAI), the International Society for Computational Biology (iSCB) and the Biomedical Engineering Society (BMES)

    Sign-Lingo: Feasibility of a Serious Game for Involving Parents in the Language Development of their Deaf or Hearing Impaired Child

    No full text
    Family involvement plays a critical factor in the language development of a deaf or hearing impaired child. Hearing parents often have major difficulties in communicating with their child when it is deaf or hearing impaired. These difficulties often lead to issues in the language development of the child. In this research we investigate the feasibility of a serious game for involving parents in the language development of their deaf or hearing impaired child by using sign language together in a fun and engaging way. From the feasibility analysis we find that such a serious game is feasible and could help deaf and hearing impaired children to improve their language development

    A minimally invasive method for beat-by-beat estimation of cardiac pressure-volume loops

    Full text link
    peer reviewedThis paper develops a minimally invasive means of estimating a patient-specific cardiac pressure-volume loop beat-to-beat. This method involves estimating the left ventricular pressure and volume waveforms using clinically available information including heart rate and aortic pressure, supported by a baseline echocardiography reading. Validation of the method was performed across an experimental data set spanning 5 Piétrain pigs, 46,318 heartbeats and a diverse clinical protocol. The method was able to accurately locate a pressure-volume loop, identifying the end-diastolic volume, end-systolic volume, mean-diastolic pressure and mean-systolic pressure of the ventricle with reasonable accuracy. While there were larger percentage errors associated with stroke work derived from the estimated pressure-volume loops, there was a strong correlation (average R value of 0.83) between the estimated and measured stroke work values. These results provide support for the potential of the method to track patient condition, in real-time, in a clinical environment. This method has the potential to yield additional information from readily available waveforms to aid in clinical decision making. Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

    RodZ and PgsA Play Intertwined Roles in Membrane Homeostasis of Bacillus subtilis and Resistance to Weak Organic Acid Stress

    Get PDF
    Weak organic acids like sorbic and acetic acid are widely used to prevent growth of spoilage organisms such as Bacilli. To identify genes involved in weak acid stress tolerance we screened a transposon mutant library of Bacillus subtilis for sorbic acid sensitivity. Mutants of the rodZ (ymfM) gene were found to be hypersensitive to the lipophilic weak organic acid. RodZ is involved in determining the cell's rod-shape and believed to interact with the bacterial actin-like MreB cytoskeleton. Since rodZ lies upstream in the genome of the essential gene pgsA (phosphatidylglycerol phosphate synthase) we hypothesized that expression of the latter might also be affected in rodZ mutants and hence contribute to the phenotype observed. We show that both genes are co-transcribed and that both the rodZ::mini-Tn10 mutant and a conditional pgsA mutant, under conditions of minimal pgsA expression, were sensitive to sorbic and acetic acid. Both strains displayed a severely altered membrane composition. Compared to the wild-type strain, phosphatidylglycerol and cardiolipin levels were lowered and the average acyl chain length was elongated. Induction of rodZ expression from a plasmid in our transposon mutant led to no recovery of weak acid susceptibility comparable to wild-type levels. However, pgsA overexpression in the same mutant partly restored sorbic acid susceptibility and fully restored acetic acid sensitivity. A construct containing both rodZ and pgsA as on the genome led to some restored growth as well. We propose that RodZ and PgsA play intertwined roles in membrane homeostasis and tolerance to weak organic acid stres

    Grass pea natural variation reveals oligogenic resistance to Fusarium oxysporum f. sp. pisi

    No full text
    Grass pea (Lathyrus sativus L.) is an annual legume species, phylogenetically close to pea (Pisum sativum L.), that may be infected by Fusarium oxysporum f. sp. pisi (Fop), the causal agent of fusarium wilt in peas with vast worldwide yield losses. A range of responses varying from high resistance to susceptibility to this pathogen has been reported in grass pea germplasm. Nevertheless, the genetic basis of that diversity of responses is still unknown, hampering its breeding exploitation. To identify genomic regions controlling grass pea resistance to fusarium wilt, a genome-wide association study approach was applied on a grass pea worldwide collection of accessions inoculated with Fop race 2. Disease responses were scored in this collection that was also subjected to high-throughput based single nucleotide polymorphisms (SNP) screening through genotyping-by-sequencing. A total of 5,651 high-quality SNPs were considered for association mapping analysis, performed using mixed linear models accounting for population structure. Because of the absence of a fully assembled grass pea reference genome, SNP markers’ genomic positions were retrieved from the pea's reference genome v1a. In total, 17 genomic regions were associated with three fusarium wilt response traits in grass pea, anticipating an oligogenic control. Seven of these regions were located on pea chromosomes 1, 6, and 7. The candidate genes underlying these regions were putatively involved in secondary and amino acid metabolism, RNA (regulation of transcription), transport, and development. This study revealed important fusarium wilt resistance favorable grass pea SNP alleles, allowing the development of molecular tools for precision disease resistance breeding.Financial support by Fundação para a Ciência e Tecnologia (FCT), Portugal, is acknowledged through grant PD/BD/114418/2016 (Ana Margarida Sampaio), the CEECIND/00198/2017 research contract by the stimulus of scientific employment (Carmen Santos), the research unit GREEN-IT (UID/04551/2020), and the QuaLaty project (PTDC/AGR-TEC/0992/2014). Susana de Sousa Araújo acknowledges the financial support from the NORTE 2020 throughout the I-CERES project (NORTE-01-0145-FEDER-000082), funded by the Fundo Europeu de Desenvolvimento Regional (FEDER) and project NORTE-06-3559-FSE-000103 funded by the Fundo Social Europeu (FSE). We also thank the Spanish Research Agency (AEI) project AGL2017-82907-R and PID2020-11468RB-100, the FP7 EU funding through the LEGATO project (grant agreement FP7-613551) and the project KK.01.1.1.01.0005 Biodiversity and Molecular Plant Breeding, Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroPBioDiv), Zagreb, Croatia
    corecore