106 research outputs found

    Pairwise kSZ signal extraction efficacy and optical depth estimation

    Full text link
    We determine the efficacy of the kinematic Sunyaev-Zel'dovich signal extraction pipeline, using pairwise kSZ measurements, in recovering unbiased estimates of the signal and inference of the associated optical depth. We consider the impact of cluster co-alignments along the line of sight, the modeling of baryonic clustering, and the presence of diffuse gas, as well as instrument beam convolution and noise. We demonstrate that two complementary approaches, aperture photometry, and a matched filter, can be used to recover an unbiased estimate of the cluster kSZ signal and the associated optical depth. Aperture photometry requires a correction factor accounting for the subtraction of signal in the annulus while the matched filter requires a tuning of the signal template profile. We show that both of these can be calibrated from simulated survey data. The optical depth estimates are also consistent with those inferred from stacked thermal SZ measurements. We apply the approaches to the publicly available Atacama Cosmology Telescope (ACT) data. The techniques developed here provide a promising method to leverage upcoming kSZ measurements, from ACT, Simons Observatory, CCAT, and CMB-S4 with spectroscopic galaxy surveys from DESI, Euclid, and Roman, to constrain cosmological properties of the dark energy, gravity, and neutrino masses

    Optimizing the Efficiency of Fabry-Perot Interferometers with Silicon-Substrate Mirrors

    Full text link
    We present the novel design of microfabricated, silicon-substrate based mirrors for use in cryogenic Fabry-Perot Interferometers (FPIs) for the mid-IR to sub-mm/mm wavelength regime. One side of the silicon substrate will have a double-layer metamaterial anti-reflection coating (ARC) anisotropically etched into it and the other side will be metalized with a reflective mesh pattern. The double-layer ARC ensures a reflectance of less than 1% at the surface substrate over the FPI bandwidth. This low reflectance is required to achieve broadband capability and to mitigate contaminating resonances from the silicon surface. Two silicon substrates with their metalized surfaces facing each other and held parallel with an adjustable separation will compose the FPI. To create an FPI with nearly uniform finesse over the FPI bandwidth, we use a combination of inductive and capacitive gold meshes evaporated onto the silicon substrate. We also consider the use of niobium as a superconducting reflective mesh for long wavelengths to eliminate ohmic losses at each reflection in the resonating cavity of the FPI and thereby increase overall transmission. We develop these silicon-substrate based FPIs for use in ground (e.g. CCAT-prime), air (e.g. HIRMES), and future space-based telescopes (e.g. the Origins Space Telescope concept). Such FPIs are well suited for spectroscopic imaging with the upcoming large IR/sub-mm/mm TES bolometer detector arrays. Here we present the fabrication and performance of multi-layer, plasma-etched, silicon metamaterial ARC, as well as models of the mirrors and FPIs.Comment: Presented at SPIE Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, June 14, 201

    Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    Full text link
    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope. Located at an elevation of 5190 m, ACTPol measures the Cosmic Microwave Background (CMB) temperature and polarization with arcminute-scale angular resolution. Calibration of the detector angles is a critical step in producing maps of the CMB polarization. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We present our optical modeling and measurements associated with calibrating the detector angles in ACTPol.Comment: 12 pages, 8 figures, conference proceedings submitted to Proceedings of SPIE; added reference in section 2 and merged repeated referenc

    CCAT-prime: a novel telescope for submillimeter astronomy

    Full text link
    The CCAT-prime telescope is a 6-meter aperture, crossed-Dragone telescope, designed for millimeter and sub-millimeter wavelength observations. It will be located at an altitude of 5600 meters, just below the summit of Cerro Chajnantor in the high Atacama region of Chile. The telescope's unobscured optics deliver a field of view of almost 8 degrees over a large, flat focal plane, enabling it to accommodate current and future instrumentation fielding >100k diffraction-limited beams for wavelengths less than a millimeter. The mount is a novel design with the aluminum-tiled mirrors nested inside the telescope structure. The elevation housing has an integrated shutter that can enclose the mirrors, protecting them from inclement weather. The telescope is designed to co-host multiple instruments over its nominal 15 year lifetime. It will be operated remotely, requiring minimum maintenance and on-site activities due to the harsh working conditions on the mountain. The design utilizes nickel-iron alloy (Invar) and carbon-fiber-reinforced polymer (CFRP) materials in the mirror support structure, achieving a relatively temperature-insensitive mount. We discuss requirements, specifications, critical design elements, and the expected performance of the CCAT-prime telescope. The telescope is being built by CCAT Observatory, Inc., a corporation formed by an international partnership of universities. More information about CCAT and the CCAT-prime telescope can be found at www.ccatobservatory.org.Comment: Event: SPIE Astronomical Telescope + Instrumentation, 2018, Austin, Texas, USA; Proceedings Volume 10700, Ground-based and Airborne Telescopes VII; 107005X (2018

    Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    Full text link
    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling ~5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.Comment: 9 pages, 5 figures, SPIE Astronomical Telescopes and Instrumentation conference proceeding

    The Simons Observatory: Magnetic Shielding Measurements for the Universal Multiplexing Module

    Full text link
    The Simons Observatory (SO) includes four telescopes that will measure the temperature and polarization of the cosmic microwave background using over 60,000 highly sensitive transition-edge bolometers (TES). These multichroic TES bolometers are read out by a microwave RF SQUID multiplexing system with a multiplexing factor of 910. Given that both TESes and SQUIDs are susceptible to magnetic field pickup and that it is hard to predict how they will respond to such fields, it is important to characterize the magnetic response of these systems empirically. This information can then be used to limit spurious signals by informing magnetic shielding designs for the detectors and readout. This paper focuses on measurements of magnetic pickup with different magnetic shielding configurations for the SO universal multiplexing module (UMM), which contains the SQUIDs, associated resonators, and TES bias circuit. The magnetic pickup of a prototype UMM was tested under three shielding configurations: no shielding (copper packaging), aluminum packaging for the UMM, and a tin/lead-plated shield surrounding the entire dilution refrigerator 100 mK cold stage. The measurements show that the aluminum packaging outperforms the copper packaging by a shielding factor of 8-10, and adding the tin/lead-plated 1K shield further increases the relative shielding factor in the aluminum configuration by 1-2 orders of magnitude.Comment: 7 pages, 4 figure, conference proceedings submitted to the Journal of Low Temperature Physic

    The optical design of the six-meter CCAT-prime and Simons Observatory telescopes

    Full text link
    A common optical design for a coma-corrected, 6-meter aperture, crossed-Dragone telescope has been adopted for the CCAT-prime telescope of CCAT Observatory, Inc., and for the Large Aperture Telescope of the Simons Observatory. Both are to be built in the high altitude Atacama Desert in Chile for submillimeter and millimeter wavelength observations, respectively. The design delivers a high throughput, relatively flat focal plane, with a field of view 7.8 degrees in diameter for 3 mm wavelengths, and the ability to illuminate >100k diffraction-limited beams for < 1 mm wavelengths. The optics consist of offset reflecting primary and secondary surfaces arranged in such a way as to satisfy the Mizuguchi-Dragone criterion, suppressing first-order astigmatism and maintaining high polarization purity. The surface shapes are perturbed from their standard conic forms in order to correct coma aberrations. We discuss the optical design, performance, and tolerancing sensitivity. More information about CCAT-prime can be found at ccatobservatory.org and about Simons Observatory at simonsobservatory.org.Comment: Event: SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, USA; Proceedings Volume 10700, Ground-based and Airborne Telescopes VII; 1070041 (2018
    • …
    corecore