9 research outputs found

    Comparison between satellite-based and cosmic ray probe soil moisture estimates : a case study in the Cathedral Peak catchment.

    Get PDF
    Master of Science in Environmental Hydrology. University of KwaZulu-Natal, Pietermaritzburg 2015.Abstract available in PDF file

    Calibration and Validation of the Cosmic Ray Neutron Rover for SoilWater Mapping within Two South African Land Classes

    Get PDF
    Knowledge of soil water at a range of spatial scales would further our understanding of the dynamic variable and its influence on numerous hydrological applications. Cosmic ray neutron technology currently consists of the Cosmic Ray Neutron Sensor (CRNS) and the Cosmic Ray Neutron Rover (CRNR). The CRNR is an innovative tool to map surface soil water across the land surface. This research assessed the calibration and validation of the CRNR at two survey sites (hygrophilous grassland and pine forest) within the Vasi area with an area of 72 and 56 ha, respectively. The assessment of the calibrations showed that consistent calibration values (N0) were obtained for both survey sites. The hygrophilous grassland site had an average N0 value of 133.441 counts per minute (cpm) and an average error of 2.034 cpm. The pine site had an average N0 value of 132.668 cpm and an average error of 0.375 cpm between surveys. The validation of CRNR soil water estimates with interpolated hydro-sense soil water estimates showed that the CRNR can provide spatial estimates of soil water across the landscape. The hydro-sense and CRNR soil water estimates had a R2 of 0.439 at the hygrophilous grassland site and 0.793 at the pine site

    Cosmic ray neutrons provide an innovative technique for estimating intermediate scale soil moisture

    Get PDF
    Soil moisture is an important hydrological parameter, which is essential for a variety of applications, thereby extending to numerous disciplines. Currently, there are three methods of estimating soil moisture: ground-based (in-situ) measurements; remote sensing based methods and land surface models. In recent years, the cosmic ray probe (CRP), which is an in-situ technique, has been implemented in several countries across the globe. The CRP provides area-averaged soil moisture at an intermediate scale and thus bridges the gap between in-situ point measurements and global satellite-based soil moisture estimates. The aim of this study was to test the suitability of the CRP to provide spatial estimates of soil moisture. The CRP was set up and calibrated in Cathedral Peak Catchment VI. An in-situ soil moisture network consisting of time-domain reflectometry and Echo probes was created in Catchment VI, and was used to validate the CRP soil moisture estimates. Once calibrated, the CRP was found to provide spatial estimates of soil moisture, which correlated well with the in-situ soil moisture network data set and yielded an R2 value of 0.845. The use of the CRP for soil moisture monitoring provided reliable, accurate and continuous soil moisture estimates over the catchment area. The wealth of current and potential applications makes the CRP very appealing for scientists and engineers in various fields

    Calibration and Validation of the Cosmic Ray Neutron Rover for SoilWater Mapping within Two South African Land Classes

    Get PDF
    Knowledge of soil water at a range of spatial scales would further our understanding of the dynamic variable and its influence on numerous hydrological applications. Cosmic ray neutron technology currently consists of the Cosmic Ray Neutron Sensor (CRNS) and the Cosmic Ray Neutron Rover (CRNR). The CRNR is an innovative tool to map surface soil water across the land surface. This research assessed the calibration and validation of the CRNR at two survey sites (hygrophilous grassland and pine forest) within the Vasi area with an area of 72 and 56 ha, respectively. The assessment of the calibrations showed that consistent calibration values (N0) were obtained for both survey sites. The hygrophilous grassland site had an average N0 value of 133.441 counts per minute (cpm) and an average error of 2.034 cpm. The pine site had an average N0 value of 132.668 cpm and an average error of 0.375 cpm between surveys. The validation of CRNR soil water estimates with interpolated hydro-sense soil water estimates showed that the CRNR can provide spatial estimates of soil water across the landscape. The hydro-sense and CRNR soil water estimates had a R2 of 0.439 at the hygrophilous grassland site and 0.793 at the pine site

    The Applicability of the Cosmic Ray Neutron Sensor to Simultaneously Monitor Soil Water Content and Biomass in an Acacia mearnsii Forest

    Get PDF
    Soil water content is an important hydrological parameter, which is difficult to measure at a field scale due to its spatial and temporal heterogeneity. The Cosmic Ray Neutron Sensor (CRNS) is a novel and innovative approach to estimate area-averaged soil water content at an intermediate scale, which has been implemented across the globe. The CRNS is moderated by all hydrogen sources within its measurement footprint. In order to isolate the soil water content signal from the neutron intensity, the other sources of hydrogen need to be accounted for. The CRNS’s applications are not only limited to soil water content estimation, as it can potentially be used to monitor biomass. The Two-Streams clear-felling provided the unique opportunity to monitor the cosmic ray neutron intensities before, during, and after the clear-felling. The cadmium-difference method was used to obtain the pure thermal and epithermal neutron intensities from the bare and moderated detectors. The study concluded that the presence of biomass within the site reduced the epithermal neutron intensity by 12.43% and the N0 value by 13.8%. The use of the neutron ratio to monitor biomass was evaluated and changes in the neutron ratio coincided with biomass changes and resulted in a high correlation (R2 of 0.868) with the normalized difference vegetation index (NDVI) and (R2 of 0.817) leaf area index (LAI). The use of the CRNS to simultaneously monitor soil water content and biomass will be beneficial in providing more reliable soil water content estimates, provide biomass estimates at a field scale, and aid in understanding the dynamics between soil water content and vegetation

    The Applicability of the Cosmic Ray Neutron Sensor to Simultaneously Monitor Soil Water Content and Biomass in an Acacia mearnsii Forest

    No full text
    Soil water content is an important hydrological parameter, which is difficult to measure at a field scale due to its spatial and temporal heterogeneity. The Cosmic Ray Neutron Sensor (CRNS) is a novel and innovative approach to estimate area-averaged soil water content at an intermediate scale, which has been implemented across the globe. The CRNS is moderated by all hydrogen sources within its measurement footprint. In order to isolate the soil water content signal from the neutron intensity, the other sources of hydrogen need to be accounted for. The CRNS’s applications are not only limited to soil water content estimation, as it can potentially be used to monitor biomass. The Two-Streams clear-felling provided the unique opportunity to monitor the cosmic ray neutron intensities before, during, and after the clear-felling. The cadmium-difference method was used to obtain the pure thermal and epithermal neutron intensities from the bare and moderated detectors. The study concluded that the presence of biomass within the site reduced the epithermal neutron intensity by 12.43% and the N0 value by 13.8%. The use of the neutron ratio to monitor biomass was evaluated and changes in the neutron ratio coincided with biomass changes and resulted in a high correlation (R2 of 0.868) with the normalized difference vegetation index (NDVI) and (R2 of 0.817) leaf area index (LAI). The use of the CRNS to simultaneously monitor soil water content and biomass will be beneficial in providing more reliable soil water content estimates, provide biomass estimates at a field scale, and aid in understanding the dynamics between soil water content and vegetation

    The applicability of the cosmic ray neutron sensor to simultaneously monitor soil water content and biomass in an Acacia mearnsii forest

    No full text
    Soil water content is an important hydrological parameter, which is difficult to measure at a field scale due to its spatial and temporal heterogeneity. The Cosmic Ray Neutron Sensor (CRNS) is a novel and innovative approach to estimate area-averaged soil water content at an intermediate scale, which has been implemented across the globe. The CRNS is moderated by all hydrogen sources within its measurement footprint. In order to isolate the soil water content signal from the neutron intensity, the other sources of hydrogen need to be accounted for. The CRNS’s applications are not only limited to soil water content estimation, as it can potentially be used to monitor biomass. The Two-Streams clear-felling provided the unique opportunity to monitor the cosmic ray neutron intensities before, during, and after the clear-felling. The cadmium-difference method was used to obtain the pure thermal and epithermal neutron intensities from the bare and moderated detectors. The study concluded that the presence of biomass within the site reduced the epithermal neutron intensity by 12.43% and the N0 value by 13.8%. The use of the neutron ratio to monitor biomass was evaluated and changes in the neutron ratio coincided with biomass changes and resulted in a high correlation (R2 of 0.868) with the normalized difference vegetation index (NDVI) and (R2 of 0.817) leaf area index (LAI). The use of the CRNS to simultaneously monitor soil water content and biomass will be beneficial in providing more reliable soil water content estimates, provide biomass estimates at a field scale, and aid in understanding the dynamics between soil water content and vegetation.Partnerships for Enhanced Engagement in Research (USA); South African Agency for Science and Technology Advancement; United States Agency for International Development; University of KwaZulu-Natal; University of Pretoria; the National Research Foundation (NRF) of South Africa; the Department of Science and Technology (South African); the Water Research Commission (WRC); the South African Environmental Observation Network (SAEON); the Daugherty Water Food Global Institute, the Global Engagement office of the University of Nebraska-Lincoln and the USDA National Institute of Food and Agriculturehttps://www.mdpi.com/journal/hydrologypm2021Plant Production and Soil Scienc

    Calibration and validation of the cosmic ray neutron rover for soil water mapping within two South African land classes

    Get PDF
    Knowledge of soil water at a range of spatial scales would further our understanding of the dynamic variable and its influence on numerous hydrological applications. Cosmic ray neutron technology currently consists of the Cosmic Ray Neutron Sensor (CRNS) and the Cosmic Ray Neutron Rover (CRNR). The CRNR is an innovative tool to map surface soil water across the land surface. This research assessed the calibration and validation of the CRNR at two survey sites (hygrophilous grassland and pine forest) within the Vasi area with an area of 72 and 56 ha, respectively. The assessment of the calibrations showed that consistent calibration values (N0) were obtained for both survey sites. The hygrophilous grassland site had an average N0 value of 133.441 counts per minute (cpm) and an average error of 2.034 cpm. The pine site had an average N0 value of 132.668 cpm and an average error of 0.375 cpm between surveys. The validation of CRNR soil water estimates with interpolated hydro-sense soil water estimates showed that the CRNR can provide spatial estimates of soil water across the landscape. The hydro-sense and CRNR soil water estimates had a R2 of 0.439 at the hygrophilous grassland site and 0.793 at the pine site.Supplementary material: Excel document containing the Cosmic Ray Neutron Rover (raw) data and the Hydro-sense soil water data for Surveys one, two, three and four, at the hygrophilous grassland and pine forest site.The Partnerships for Enhanced Engagement in Research (USA); South African Agency for Science and Technology Advancement; United States Agency for International Development; University of KwaZulu-Natal; University of Pretoria; the National Research Foundation (NRF) of South Africa; the Department of Science and Technology (South African), theWater Research Commission (WRC) and the South African Environmental Observation Network (SAEON). T.E.F. acknowledges the financial support of The DaughertyWater Food Global Institute, the Global Engagement o ce of the University of Nebraska-Lincoln and the USDA National Institute of Food and Agriculture, Hatch project #1009760.https://www.mdpi.com/journal/hydrologyam2020Plant Production and Soil Scienc

    Cosmic ray neutrons provide an innovative technique for estimating intermediate scale soil moisture

    Get PDF
    Soil moisture is an important hydrological parameter, which is essential for a variety of applications, thereby extending to numerous disciplines. Currently, there are three methods of estimating soil moisture: ground-based (in-situ) measurements; remote sensing based methods and land surface models. In recent years, the cosmic ray probe (CRP), which is an in-situ technique, has been implemented in several countries across the globe. The CRP provides area-averaged soil moisture at an intermediate scale and thus bridges the gap between in-situ point measurements and global satellite-based soil moisture estimates. The aim of this study was to test the suitability of the CRP to provide spatial estimates of soil moisture. The CRP was set up and calibrated in Cathedral Peak Catchment VI. An in-situ soil moisture network consisting of time-domain reflectometry and Echo probes was created in Catchment VI, and was used to validate the CRP soil moisture estimates. Once calibrated, the CRP was found to provide spatial estimates of soil moisture, which correlated well with the in-situ soil moisture network data set and yielded an R2 value of 0.845. The use of the CRP for soil moisture monitoring provided reliable, accurate and continuous soil moisture estimates over the catchment area. The wealth of current and potential applications makes the CRP very appealing for scientists and engineers in various fields.Significance: The cosmic ray probe provides spatial estimates of surface soil moisture at an intermediate scale of 18 hectares. A single cosmic ray probe can replace a network of conventional in-situ instruments to provide reliable soil moisture estimates. The cosmic ray probe is capable of estimating soil moisture in previously problematic areas (saline soil, wetlands, rocky soil). Cosmic ray probes can provide data for hydro-meteorologists interested in land–atmosphere interactions. The cosmic ray probe estimates can be promising for remote sensing scientists for product calibration and validation
    corecore