32 research outputs found

    Reinforcing the pulmonary artery autograft in the aortic position with a textile mesh: a histological evaluation

    Get PDF
    OBJECTIVES The Ross procedure involves replacing a patient’s diseased aortic valve with their own pulmonary valve. The most common failure mode is dilatation of the autograft. Various strategies to reinforce the autograft have been proposed. Personalized external aortic root support has been shown to be effective in stabilizing the aortic root in Marfan patients. In this study, the use of a similar external mesh to support a pulmonary artery autograft was evaluated. METHODS The pulmonary artery was translocated as an interposition autograft in the descending thoracic aortas of 10 sheep. The autograft was reinforced with a polyethylene terephthalate mesh (n = 7) or left unreinforced (n = 3). After 6 months, a computed tomography scan was taken, and the descending aorta was excised and histologically examined using the haematoxylin–eosin and Elastica van Gieson stains. RESULTS The autograft/aortic diameter ratio was 1.59 in the unreinforced group but much less in the reinforced group (1.11) (P < 0.05). A fibrotic sheet, variable in thickness and containing fibroblasts, neovessels and foreign body giant cells, was incorporated in the mesh. Histological examination of the reinforced autograft and the adjacent aorta revealed thinning of the vessel wall due to atrophy of the smooth muscle cells. Potential spaces between the vessel wall and the mesh were filled with oedema. CONCLUSIONS Reinforcing an interposition pulmonary autograft in the descending aorta with a macroporous mesh showed promising results in limiting autograft dilatation in this sheep model. Histological evaluation revealed atrophy of the smooth muscle cell and consequently thinning of the vessel wall within the mesh support

    Biomechanical evaluation of a personalized external aortic root support applied in the Ross procedure

    Get PDF
    A commonly heard concern in the Ross procedure, where a diseased aortic valve is replaced by the patient's own pulmonary valve, is the possibility of pulmonary autograft dilatation. We performed a biomechanical investigation of the use of a personalized external aortic root support or exostent as a possibility for supporting the autograft. In ten sheep a short length of pulmonary artery was interposed in the descending aorta, serving as a simplified version of the Ross procedure. In seven of these cases, the autograft was supported by an external mesh or so-called exostent. Three sheep served as control, of which one was excluded from the mechanical testing. The sheep were sacrificed six months after the procedure. Samples of the relevant tissues were obtained for subsequent mechanical testing: normal aorta, normal pulmonary artery, aorta with exostent, pulmonary artery with exostent, and pulmonary artery in aortic position for six months. After mechanical testing, the material parameters of the Gasser-Ogden-Holzapfel model were determined for the different tissue types. Stress-strain curves of the different tissue types show significantly different mechanical behavior. At baseline, stress-strain curves of the pulmonary artery are lower than aortic stress-strain curves, but at the strain levels at which the collagen fibers are recruited, the pulmonary artery behaves stiffer than the aorta. After being in aortic position for six months, the pulmonary artery tends towards aorta-like behavior, indicating that growth and remodeling processes have taken place. When adding an exostent around the pulmonary autograft, the mechanical behavior of the composite artery (exostent + artery) differs from the artery alone, the non-linearity being more evident in the former

    α,β-D-Constrained Nucleic Acids Are Strong Terminators of Thermostable DNA Polymerases in Polymerase Chain Reaction

    Get PDF
    (SC5′, RP) α,β-D- Constrained Nucleic Acids (CNA) are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5′C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases

    Distale Femurfrakturen. Retrospektiver Vergleich von LISS Platte und retrogradem Marknagel (SCN)

    No full text

    Winkelstabile ventrale Spondylodese an der HWS - Cage versus Span

    No full text

    Konservative Behandlung oder operative Stabilisierung von Densfrakturen: Eine retrospektive Multicenterstudie

    No full text

    Anderson II und III Frakturen - Stabilisierungstechniken und Pseudarthrosenrate

    No full text
    corecore