29 research outputs found
The application of artificial intelligence to understand the pathophysiological basis of psychogenic nonepileptic seizures
Abstract Psychogenic nonepileptic seizures (PNES) are episodes of paroxysmal impairment associated with a range of motor, sensory, and mental manifestations, which perfectly mimic epileptic seizures. Several patterns of neural abnormalities have been described without identifying a definite neurobiological substrate. In this multicenter cross-sectional study, we applied a multivariate classification algorithm on morphological brain imaging metrics to extract reliable biomarkers useful to distinguish patients from controls at an individual level. Twenty-three patients with PNES and 21 demographically matched healthy controls (HC) underwent an extensive neuropsychiatric/neuropsychological and neuroimaging assessment. One hundred and fifty morphological brain metrics were used for training a random forest (RF) machine-learning (ML) algorithm. A typical complex psychopathological construct was observed in PNES. Similarly, univariate neuroimaging analysis revealed widespread neuroanatomical changes affecting patients with PNES. Machine-learning approach, after feature selection, was able to perform an individual classification of PNES from controls with a mean accuracy of 74.5%, revealing that brain regions influencing classification accuracy were mainly localized within the limbic (posterior cingulate and insula) and motor inhibition systems (the right inferior frontal cortex (IFC)). This study provides Class II evidence that the considerable clinical and neurobiological heterogeneity observed in individuals with PNES might be overcome by ML algorithms trained on surface-based magnetic resonance imaging (MRI) data
MRI Asymmetry Index of Hippocampal Subfields Increases Through the Continuum From the Mild Cognitive Impairment to the Alzheimer's Disease
Objective: It is well-known that the hippocampus presents significant asymmetry in Alzheimer's disease (AD) and that difference in volumes between left and right exists and varies with disease progression. However, few works investigated whether the asymmetry degree of subfields of hippocampus changes through the continuum from Mild Cognitive Impairment (MCI) to AD. Thus, aim of the present work was to evaluate the Asymmetry Index (AI) of hippocampal substructures as possible MRI biomarkers of Dementia. Moreover, we aimed to assess whether the subfields presented peculiar differences between left and right hemispheres. We also investigated the relationship between the asymmetry magnitude in hippocampal subfields and the decline of verbal memory as assessed by Rey's auditory verbal learning test (RAVLT).Methods: Four-hundred subjects were selected from ADNI, equally divided into healthy controls (HC), AD, stable MCI (sMCI), and progressive MCI (pMCI). The structural baseline T1s were processed with FreeSurfer 6.0 and volumes of whole hippocampus (WH) and 12 subfields were extracted. The AI was calculated as: (|Left-Right|/(Left+Right))*100. ANCOVA was used for evaluating AI differences between diagnoses, while paired t-test was applied for assessing changes between left and right volumes, separately for each group. Partial correlation was performed for exploring relationship between RAVLT summary scores (Immediate, Learning, Forgetting, Percent Forgetting) and hippocampal substructures AI. The statistical threshold was Bonferroni corrected p < 0.05/13 = 0.0038.Results: We found a general trend of increased degree of asymmetry with increasing severity of diagnosis. Indeed, AD presented the higher magnitude of asymmetry compared with HC, sMCI and pMCI, in the WH (AI mean 5.13 ± 4.29 SD) and in each of its twelve subfields. Moreover, we found in AD a significant negative correlation (r = â0.33, p = 0.00065) between the AI of parasubiculum (mean 12.70 ± 9.59 SD) and the RAVLT Learning score (mean 1.70 ± 1.62 SD).Conclusions: Our findings showed that hippocampal subfields AI varies differently among the four groups HC, sMCI, pMCI, and AD. Moreover, we foundâfor the first timeâthat hippocampal substructures had different sub-patterns of lateralization compared with the whole hippocampus. Importantly, the severity in learning rate was correlated with pathological high degree of asymmetry in parasubiculum of AD patients
Seven mutations of the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus
Permanent neonatal diabetes mellitus (PNDM) is a rare disorder usually presenting within 6 months of birth. Although several genes have been linked to this disorder, in almost half the cases documented in Italy, the genetic cause remains unknown. Because the Akita mouse bearing a mutation in the Ins2 gene exhibits PNDM associated with pancreatic beta cell apoptosis, we sequenced the human insulin gene in PNDM subjects with unidentified mutations. We discovered 7 heterozygous mutations in 10 unrelated probands. In 8 of these patients, insulin secretion was detectable at diabetes onset, but rapidly declined over time. When these mutant proinsulins were expressed in HEK293 cells, we observed defects in insulin protein folding and secretion. In these experiments, expression of the mutant proinsulins was also associated with increased Grp78 protein expression and XBP1 mRNA splicing, 2 markers of endoplasmic reticulum stress, and with increased apoptosis. Similarly transfected INS-1E insulinoma cells had diminished viability compared with those expressing WT proinsulin. In conclusion, we find that mutations in the insulin gene that promote proinsulin misfolding may cause PNDM
A consensus guide to using functional near-infrared spectroscopy in posture and gait research
BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is increasingly used in the field of posture and gait to investigate patterns of cortical brain activation while people move freely. fNIRS methods, analysis and reporting of data vary greatly across studies which in turn can limit the replication of research, interpretation of findings and comparison across works.
RESEARCH QUESTION AND METHODS: Considering these issues, we propose a set of practical recommendations for the conduct and reporting of fNIRS studies in posture and gait, acknowledging specific challenges related to clinical groups with posture and gait disorders.
RESULTS: Our paper is organized around three main sections: 1) hardware set up and study protocols, 2) artefact removal and data processing and, 3) outcome measures, validity and reliability; it is supplemented with a detailed checklist.
SIGNIFICANCE: This paper was written by a core group of members of the International Society for Posture and Gait Research and posture and gait researchers, all experienced in fNIRS research, with the intent of assisting the research community to lead innovative and impactful fNIRS studies in the field of posture and gait, whilst ensuring standardization of research
Adsorption properties of carbon nanotubes and application of thermal desoprtion spectroscopy to ammonia and methane ices and zoisite
Dottorato di Ricerca in Fisica, Ciclo XXIII, a.a. 2010-2011In this work we wanted to underline the importance of Thermal Desorption Spectroscopy and its applications to several branches of Physics.
Temperature-programmed desorption techniques (TPD) are important to determinate kinetic and thermodynamic parameters of desorption processes and decomposition reactions.
Knowledge of the nature of the desorption process is fundamental to understand the nature of the elementary chemical processes of adsorbates, as the energetics of bonding, the specification of the chemical nature of the bound species and the nature and magnitude of interactional effect between adsorbed species.
We focused our attention on the applications of Thermal Desorption Spectroscopy (TDS) to High-Energies Physics, Astrophysics and Geophysics; in fact this technique was used, respectively, to investigate the molecular hydrogen adsorption on carbon nanotubes, the effects of electron bombardment on ammonia and methane ices and changes of zoisite mineral after heating.
The molecular hydrogen adsorption on carbon nanotubes was studied to find a possible solution to vacuum system problems of Large Hadron Collider (LHC); in fact, the circular path of photon beams produces synchrotron radiation which deteriorates LHC vacuum desorbing gas molecules from the ring walls. Among the desorbed species the most problematic to pump out is H2. Since LHC elements operate at low temperatures, a possible solution to vacuum problem is the installation of cryosorbent materials on the LHC walls. In this work we study the possibility to use carbon nanotubes as criosorbers in future accelerators. Our sample, furnished by Prof. Nagy group of Chemical Engineering Department of Calabria University, is constituted by MWNTs synthesized by chemical vapor deposition using C2H4 and subsequently purified. Our investigations confirm that the carbon nanotubes have a great adsorption capacity also at low temperatures both for H2 and noble gases as Kr; then we observed that H2 adsorption on CNT is described by a first kinetic-order, while Kr adsorption is characterized by a zero kinetic-order. By means of TDS we calculate the activation energy for H2 adsorption on carbon nanotubes and we found a value of about 3KJ/mol, perfectly coherent with theoretic one. Moreover, from a comparison between nanotubes and other carbon-based material (as charcoal), we noted that adsorption efficiency for CNT is almost an order of magnitude higher then charcoal. So carbon nanotubes are good candidates to cryosorbers in future accelerators.
2
As Thermal Desorption Spectroscopy application to Astrophysics we studied the effect of electron bombardment on ammonia and methane ices. The interstellar medium is composed for 99% by gas; molecules, atoms and radicals at gas state condense on dust grains surface of molecular clouds (at 10 K) creating an icy mantle with a thickness of 0.1 ÎŒm. The presence of ices is confirmed by IR spectroscopy of obscured stellar sources and in interstellar grains are localized solid mixture containing H2O, CO, CH4 and NH3. In these environments ices are subjected to chemical and physical processes, specifically to bombardment of photons and cosmic rays, with the consequent synthesis of new organic species
In this work we conducted an investigation of the chemical processing of ammonia and methane ices subjected to energetic electrons. By Thermal Desorption Spectroscopy we verify the production of new organic species, after energetic irradiation in interstellar ices, as diazene (N2H2), ethane (C2H6) and acetylene (C2H2).
Finally, in Geophysics and Petrology Thermal Desorption Spectroscopy can be used to study minerals chemical composition. Our interest was focused on zoisite and the sample investigated was furnished by prof. AjĂČ from âInstitute of Inorganic Chemistry and Surfacesâ of CNR, in Padova. In this work we used TDS to investigate zoisite behaviour during heating form room temperature to 650oC and to understand if its modification into tanzanite variety after heating is due to structural changes or to a dehydration mechanism.UniversitĂ della Calabri
Near-Infrared Spectroscopy in Gait Disorders: Is It Time to Begin?
Walking is a complex motor behavior with a special relevance in clinical neurology. Many neurological diseases, such as Parkinsonâs disease and stroke, are characterized by gait disorders whose neurofunctional correlates are poorly investigated. Indeed, the analysis of real walking with the standard neuroimaging techniques poses strong challenges, and only a few studies on motor imagery or walking observation have been performed so far. Functional near-infrared spectroscopy (fNIRS) is becoming an important research tool to assess functional activity in neurological populations or for special tasks, such as walking, because it allows investigating brain hemodynamic activity in an ecological setting, without strong immobility constraints. A systematic review following PRISMA guidelines was conducted on the fNIRS- based examination of gait disorders. Twelve of the initial yield of 489 articles have been included in this review. The lesson learnt from these studies suggest that oxy-hemoglobin levels within the prefrontal and premotor cortices are more sensitive to compensation strategies reflecting postural control and restoration of gait disorders. Although this field of study is in its relative infancy, the evidence provided encourages the translation of fNIRS in clinical practice, as it offers a unique opportunity to explore in depth the activity of the cortical motor system during real walking in neurological patients. We also discuss to what extent fNIRS may be applied for assessing the effectiveness of rehabilitation programs.
Keyword
Physiological Aging Influence on Brain Hemodynamic Activity during Task-Switching: A fNIRS Study
Task-switching (TS) paradigm is a well-known validated tool useful for exploring the neural substrates of cognitive control, in particular the activity of the lateral and medial prefrontal cortex. This work is aimed at investigating how physiological aging influences hemodynamic response during the execution of a color-shape TS paradigm. A multi-channel near infrared spectroscopy (fNIRS) was used to measure hemodynamic activity in 27 young (30.00 ± 7.90 years) and 11 elderly participants (57.18 ± 9.29 years) healthy volunteers (55% male, age range: (19â69) years) during the execution of a TS paradigm. Two holders were placed symmetrically over the left/right hemispheres to record cortical activity [oxy-(HbO) and deoxy-hemoglobin (HbR) concentration] of the dorso-lateral prefrontal cortex (DLPFC), the dorsal premotor cortex (PMC), and the dorso-medial part of the superior frontal gyrus (sFG). TS paradigm requires participants to repeat the same task over a variable number of trials, and then to switch to a different task during the trial sequence. A two-sample t-test was carried out to detect differences in cortical responses between groups. Multiple linear regression analysis was used to evaluate the impact of age on the prefrontal neural activity. Elderly participants were significantly slower than young participants in both color- (p < 0.01, t = â3.67) and shape-single tasks (p = 0.026, t = â2.54) as well as switching (p = 0.026, t = â2.41) and repetition trials (p = 0.012, t = â2.80). Differences in cortical activation between groups were revealed for HbO mean concentration of switching task in the PMC (p = 0.048, t = 2.94). In the whole group, significant increases of behavioral performance were detected in switching trials, which positively correlated with aging. Multivariate regression analysis revealed that the HbO mean concentration of switching task in the PMC (p = 0.01, ÎČ = â0.321) and of shape single-task in the sFG (p = 0.003, ÎČ = 0.342) were the best predictors of age effects. Our findings demonstrated that TS might be a reliable instrument to gather a measure of cognitive resources in older people. Moreover, the fNIRS-related brain activity extracted from frontoparietal cortex might become a useful indicator of aging effects
Nuove frontiere della rappresentazione digitale
Confronto interdisciplinare sull'utilizzo dell'immagine digitale nell'ambito della ricerca, sperimentazione e rappresentazione
Near-Infrared Spectroscopy in Gait Disorders: Is It Time to Begin?
Walking is a complex motor behavior with a special relevance in clinical neurology. Many neurological diseases, such as Parkinsonâs disease and stroke, are characterized by gait disorders whose neurofunctional correlates are poorly investigated. Indeed, the analysis of real walking with the standard neuroimaging techniques poses strong challenges, and only a few studies on motor imagery or walking observation have been performed so far. Functional near-infrared spectroscopy (fNIRS) is becoming an important research tool to assess functional activity in neurological populations or for special tasks, such as walking, because it allows investigating brain hemodynamic activity in an ecological setting, without strong immobility constraints. A systematic review following PRISMA guidelines was conducted on the fNIRS- based examination of gait disorders. Twelve of the initial yield of 489 articles have been included in this review. The lesson learnt from these studies suggest that oxy-hemoglobin levels within the prefrontal and premotor cortices are more sensitive to compensation strategies reflecting postural control and restoration of gait disorders. Although this field of study is in its relative infancy, the evidence provided encourages the translation of fNIRS in clinical practice, as it offers a unique opportunity to explore in depth the activity of the cortical motor system during real walking in neurological patients. We also discuss to what extent fNIRS may be applied for assessing the effectiveness of rehabilitation programs.
Keyword