6 research outputs found

    Atmospheric Aerosol Over Ukraine Region: Current Status of Knowledge and Research Efforts

    Get PDF
    In this paper the current status of knowledge and research efforts on atmospheric aerosol investigation over Ukraine region are reviewed. Several earlier results of atmospheric extinction, aerosol content and properties studies performed in Ukraine during the second part of the twentieth century are discussed. The recent findings on aerosol optical depth, Ångström exponent, optical and microphysical properties of aerosol particles (single-scattering albedo, size distribution, complex refractive index) and their seasonal variability obtained from both AERONET and portable sun-photometers measurements during the 2008–2016 period are presented and analyzed. Data of POLDER/PARASOL satellite instrument were also involved to study the aerosol properties over Ukraine and neighbor countries. The results showed that aerosol content and properties over Ukraine are very similar to ones over rest European urban regions but considerably lower than over polluted China territories. The first lidar measurements and the air quality evaluations by the PM concentration measurements in Ukraine are also discussed. The aerosol sources in Ukraine and surrounding territories are considered from analysis of the air mass back trajectory and simulation by GEOS-Chem model. The future satellite project Aerosol-UA for global aerosol studies by measurements of the scattered solar radiation polarization is discussed in the article

    Solar Light Radiometry Calibration Unit for a ScanPol Polarimeter of the Aerosol-UA Space Mission

    No full text
    The Aerosol-UA space mission will study aerosol microphysical characteristics in the Earth’s atmosphere based on the multispectral scanning polarimeter (ScanPol) and imaging polarimeter (MSIP). Both polarimeters must be precisely calibrated on the ground and in orbit to provide correct measurements. This paper considers the results of developing an experimental device for the radiometric calibration of the ScanPol. We consider the calibration unit design and operation principle to form a luminous flux with unchanged or well-predicted characteristics in a specified direction. The construction of the radiometric calibration unit is based on a sun-illuminated reflective diffuser made from the white opal glass MS20. We evaluated the scattering and polarization characteristics of the diffuser in laboratory experiments at a wide range of wavelengths. The results suggest that the polarization properties of the diffuser are negligible. The diffuser scattering parameters are close to Lambertian for illuminance conditions, which is necessary for radiometric calibration. The calibration unit was manufactured and tested during field observations of solar radiation. The results will be used for its improvement, mainly to reduce the observed stray scattered radiation entering the telescopes of the ScanPol polarization state analyzer

    Spring 2020 Atmospheric Aerosol Contamination over Kyiv City

    No full text
    Extraordinarily high aerosol contamination was observed in the atmosphere over the city of Kyiv, Ukraine, during the March–April 2020 period. The source of contamination was the large grass and forest fires in the northern part of Ukraine and the Kyiv region. The level of PM2.5 load was investigated using newly established AirVisual sensor mini-networks in five areas of the city. The aerosol data from the Kyiv AERONET sun-photometer site were analyzed for that period. Aerosol optical depth, Ångström exponent, and the aerosol particles properties (particle size distribution, single-scattering albedo, and complex refractive index) were analyzed using AERONET sun-photometer observations. The smoke particles observed at Kyiv site during the fires in general correspond to aerosol with optical properties of biomass burning aerosol. The variability of the optical properties and chemical composition indicates that the aerosol particles in the smoke plumes over Kyiv city were produced by different burning materials and phases of vegetation fires at different times. The case of enormous PM2.5 aerosol contamination in the Kyiv city reveals the need to implement strong measures for forest fire control and prevention in the Kyiv region, especially in its northwest part, where radioactive contamination from the Chernobyl disaster is still significant

    Essential variables for air quality estimation

    No full text
    Within this survey we describe the conceptual architecture of the infrastructure to measure PM2.5/PM10 concentration in the atmosphere over the Kyiv city using modern monitoring instruments. We define the requirements for information tools and network for informing Kyiv city community on the state of PM pollutions that will be created. This infrastructure will provide long-term PM2.5/PM10 observations that could be included in the AirBase network. The comprehensive review of in-situ and satellite measurements of PM2.5/PM10 is provided as well as the description current state-of-the-art for Air Quality monitoring with intelligent sensors and systems in Ukraine as-awhole and in Kyiv in particular. It is proposed to apply the concept of essential variables (EVs) used in Earth Observation to identify the variables that should be measured in priority when designing, deploying and maintaining observation systems. In this study we use and validate the global air quality products from Copernicus Atmosphere Monitoring Service obtained from modeling by GEOS-Chem model and other sources. The influence of PM and aerosols on a human health is estimated in terms of possible diseases and dangerous concentrations

    Spring 2020 Atmospheric Aerosol Contamination over Kyiv City

    No full text
    International audienceExtraordinarily high aerosol contamination was observed in the atmosphere over the city of Kyiv, Ukraine, during the March–April 2020 period. The source of contamination was the large grass and forest fires in the northern part of Ukraine and the Kyiv region. The level of PM2.5 load was investigated using newly established AirVisual sensor mini-networks in five areas of the city. The aerosol data from the Kyiv AERONET sun-photometer site were analyzed for that period. Aerosol optical depth, Ångström exponent, and the aerosol particles properties (particle size distribution, single-scattering albedo, and complex refractive index) were analyzed using AERONET sun-photometer observations. The smoke particles observed at Kyiv site during the fires in general correspond to aerosol with optical properties of biomass burning aerosol. The variability of the optical properties and chemical composition indicates that the aerosol particles in the smoke plumes over Kyiv city were produced by different burning materials and phases of vegetation fires at different times. The case of enormous PM2.5 aerosol contamination in the Kyiv city reveals the need to implement strong measures for forest fire control and prevention in the Kyiv region, especially in its northwest part, where radioactive contamination from the Chernobyl disaster is still significant
    corecore