4 research outputs found

    Lensing in the Blue II: Estimating the Sensitivity of Stratospheric Balloons to Weak Gravitational Lensing

    Full text link
    The Superpressure Balloon-borne Imaging Telescope (SuperBIT) is a diffraction-limited, wide-field, 0.5 m, near-infrared to near-ultraviolet observatory designed to exploit the stratosphere's space-like conditions. SuperBIT's 2023 science flight will deliver deep, blue imaging of galaxy clusters for gravitational lensing analysis. In preparation, we have developed a weak lensing measurement pipeline with modern algorithms for PSF characterization, shape measurement, and shear calibration. We validate our pipeline and forecast SuperBIT survey properties with simulated galaxy cluster observations in SuperBIT's near-UV and blue bandpasses. We predict imaging depth, galaxy number (source) density, and redshift distribution for observations in SuperBIT's three bluest filters; the effect of lensing sample selections is also considered. We find that in three hours of on-sky integration, SuperBIT can attain a depth of b = 26 mag and a total source density exceeding 40 galaxies per square arcminute. Even with the application of lensing-analysis catalog selections, we find b-band source densities between 25 and 30 galaxies per square arcminute with a median redshift of z = 1.1. Our analysis confirms SuperBIT's capability for weak gravitational lensing measurements in the blue.Comment: Submitted to Astronomical Journa

    Lensing in the Blue. II. Estimating the Sensitivity of Stratospheric Balloons to Weak Gravitational Lensing

    Get PDF
    The Superpressure Balloon-borne Imaging Telescope (SuperBIT) is a diffraction-limited, wide-field, 0.5 m, near-infrared to near-ultraviolet observatory designed to exploit the stratosphere's space-like conditions. SuperBIT's 2023 science flight will deliver deep, blue imaging of galaxy clusters for gravitational lensing analysis. In preparation, we have developed a weak-lensing measurement pipeline with modern algorithms for PSF characterization, shape measurement, and shear calibration. We validate our pipeline and forecast SuperBIT survey properties with simulated galaxy cluster observations in SuperBIT's near-UV and blue bandpasses. We predict imaging depth, galaxy number (source) density, and redshift distribution for observations in SuperBIT's three bluest filters; the effect of lensing sample selections is also considered. We find that, in three hours of on-sky integration, SuperBIT can attain a depth of b = 26 mag and a total source density exceeding 40 galaxies per square arcminute. Even with the application of lensing-analysis catalog selections, we find b-band source densities between 25 and 30 galaxies per square arcminute with a median redshift of z = 1.1. Our analysis confirms SuperBIT's capability for weak gravitational lensing measurements in the blue

    Smart boots, fusion engine and aerial assets for enhanced situational awareness and safety in search & rescue operations

    Get PDF
    Innovative technologies can enhance operational capabilities of First Responders (FRs) during Search & Rescue (SAR) operations, while at the same time increasing safety levels. The INGENIOUS project1 (EU Horizon 2020) aims at developing, integrating, testing and validating a next generation SAR toolkit for collaborative response, which ensures high level of protection and augmented operational capacity in disaster  situations.  In  this  paper,  a  subset  of  components  of  the  toolkit  mostly  focused  on  increasing  situational awareness and safety are described: the Fusion Engine (FE), which receives data from multiple sources, stores and analyzes them for integration purposes regarding situational awareness and sends  them  to  the  Common  Operational  Picture  (COP)  as  well  as  the mobile FR terminals; the Smart  Boots (SB), which collect data of individual FRs and provide information regarding their health status and  alerts;  the  Modular  Airborne  Camera  System  (MACS);  the    Multi‐purpose  Autonomous  eXploring  (MAX) drone for indoor/outdoor mapping and assessment of unknown environments; and the Micro INdoor drones (MINs) used for FRs indoor localization. The functionalities of these components, as well as the first prototypes developed and currently under lab and field test, are presented in this paper

    Data Downloaded via Parachute from a NASA Super-Pressure Balloon

    Get PDF
    In April 2023, the superBIT telescope was lifted to the Earth’s stratosphere by a helium-filled super-pressure balloon to acquire astronomical imaging from above (99.5% of) the Earth’s atmosphere. It was launched from New Zealand and then, for 40 days, circumnavigated the globe five times at a latitude 40 to 50 degrees south. Attached to the telescope were four “drs” (Data Recovery System) capsules containing 5 TB solid state data storage, plus a gnss receiver, Iridium transmitter, and parachute. Data from the telescope were copied to these, and two were dropped over Argentina. They drifted 61 km horizontally while they descended 32 km, but we predicted their descent vectors within 2.4 km: in this location, the discrepancy appears irreducible below ∼2 km because of high speed, gusty winds and local topography. The capsules then reported their own locations within a few metres. We recovered the capsules and successfully retrieved all of superBIT’s data despite the telescope itself being later destroyed on landing
    corecore