4,336 research outputs found

    Universal properties of many-body delocalization transitions

    Full text link
    We study the dynamical melting of "hot" one-dimensional many-body localized systems. As disorder is weakened below a critical value these non-thermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By accounting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow sub-diffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics.Comment: 12 pages, 6 figures; major changes from v1, including a modified approach and new emphasis on conventional MBL systems rather than their critical variant

    Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems

    Full text link
    We address the hydrodynamics of operator spreading in interacting integrable lattice models. In these models, operators spread through the ballistic propagation of quasiparticles, with an operator front whose velocity is locally set by the fastest quasiparticle velocity. In interacting integrable systems, this velocity depends on the density of the other quasiparticles, so equilibrium density fluctuations cause the front to follow a biased random walk, and therefore to broaden diffusively. Ballistic front propagation and diffusive front broadening are also generically present in non-integrable systems in one dimension; thus, although the mechanisms for operator spreading are distinct in the two cases, these coarse grained measures of the operator front do not distinguish between the two cases. We present an expression for the front-broadening rate; we explicitly derive this for a particular integrable model (the "Floquet-Fredrickson-Andersen" model), and argue on kinetic grounds that it should apply generally. Our results elucidate the microscopic mechanism for diffusive corrections to ballistic transport in interacting integrable models.Comment: Published versio

    The periodic sl(2|1) alternating spin chain and its continuum limit as a bulk Logarithmic Conformal Field Theory at c=0

    Full text link
    The periodic sl(2|1) alternating spin chain encodes (some of) the properties of hulls of percolation clusters, and is described in the continuum limit by a logarithmic conformal field theory (LCFT) at central charge c=0. This theory corresponds to the strong coupling regime of a sigma model on the complex projective superspace CP1∣1=U(2∣1)/(U(1)×U(1∣1))\mathbb{CP}^{1|1} = \mathrm{U}(2|1) / (\mathrm{U}(1) \times \mathrm{U}(1|1)), and the spectrum of critical exponents can be obtained exactly. In this paper we push the analysis further, and determine the main representation theoretic (logarithmic) features of this continuum limit by extending to the periodic case the approach of [N. Read and H. Saleur, Nucl. Phys. B 777 316 (2007)]. We first focus on determining the representation theory of the finite size spin chain with respect to the algebra of local energy densities provided by a representation of the affine Temperley-Lieb algebra at fugacity one. We then analyze how these algebraic properties carry over to the continuum limit to deduce the structure of the space of states as a representation over the product of left and right Virasoro algebras. Our main result is the full structure of the vacuum module of the theory, which exhibits Jordan cells of arbitrary rank for the Hamiltonian.Comment: 69pp, 8 fig

    Strong-Disorder Renormalization Group for Periodically Driven Systems

    Full text link
    Quenched randomness can lead to robust non-equilibrium phases of matter in periodically driven (Floquet) systems. Analyzing transitions between such dynamical phases requires a method capable of treating the twin complexities of disorder and discrete time-translation symmetry. We introduce a real-space renormalization group approach, asymptotically exact in the strong-disorder limit, and exemplify its use on the periodically driven interacting quantum Ising model. We analyze the universal physics near the critical lines and multicritical point of this model, and demonstrate the robustness of our results to the inclusion of weak interactions.Comment: 11 pages, 6 figures; published versio

    Quantum Brownian motion in a quasiperiodic potential

    Full text link
    We consider a quantum particle subject to Ohmic dissipation, moving in a bichromatic quasiperiodic potential. In a periodic potential the particle undergoes a zero-temperature localization-delocalization transition as dissipation strength is decreased. We show that the delocalized phase is absent in the quasiperiodic case, even when the deviation from periodicity is infinitesimal. Using the renormalization group, we determine how the effective localization length depends on the dissipation. We show that {a similar problem can emerge in} the strong-coupling limit of a mobile impurity moving in a periodic lattice and immersed in a one-dimensional quantum gas.Comment: 5+6 pages, 1 figur

    Localization-protected order in spin chains with non-Abelian discrete symmetries

    Full text link
    We study the non-equilibrium phase structure of the three-state random quantum Potts model in one dimension. This spin chain is characterized by a non-Abelian D3D_3 symmetry recently argued to be incompatible with the existence of a symmetry-preserving many-body localized (MBL) phase. Using exact diagonalization and a finite-size scaling analysis, we find that the model supports two distinct broken-symmetry MBL phases at strong disorder that either break the Z3{\mathbb{Z}_3} clock symmetry or a Z2{\mathbb{Z}_2} chiral symmetry. In a dual formulation, our results indicate the existence of a stable finite-temperature topological phase with MBL-protected parafermionic end zero modes. While we find a thermal symmetry-preserving regime for weak disorder, scaling analysis at strong disorder points to an infinite-randomness critical point between two distinct broken-symmetry MBL phases.Comment: 5 pages, 3 figures main text; 6 pages, 3 figures supplemental material; Version 2 includes a corrected the form of the chiral order parameter, and corresponding data, as well as larger system size numerics, with no change to the phase structur
    • …
    corecore