36 research outputs found

    Observations on CFD Verification and Validation from the AIAA Drag Prediction Workshops

    Get PDF
    The authors provide observations from the AIAA Drag Prediction Workshops that have spanned over a decade and from a recent validation experiment at NASA Langley. These workshops provide an assessment of the predictive capability of forces and moments, focused on drag, for transonic transports. It is very difficult to manage the consistency of results in a workshop setting to perform verification and validation at the scientific level, but it may be sufficient to assess it at the level of practice. Observations thus far: 1) due to simplifications in the workshop test cases, wind tunnel data are not necessarily the correct results that CFD should match, 2) an average of core CFD data are not necessarily a better estimate of the true solution as it is merely an average of other solutions and has many coupled sources of variation, 3) outlier solutions should be investigated and understood, and 4) the DPW series does not have the systematic build up and definition on both the computational and experimental side that is required for detailed verification and validation. Several observations regarding the importance of the grid, effects of physical modeling, benefits of open forums, and guidance for validation experiments are discussed. The increased variation in results when predicting regions of flow separation and increased variation due to interaction effects, e.g., fuselage and horizontal tail, point out the need for validation data sets for these important flow phenomena. Experiences with a recent validation experiment at NASA Langley are included to provide guidance on validation experiments

    Development of a Common Research Model for Applied CFD Validation Studies

    Get PDF
    The development of a wing/body/nacelle/pylon/horizontal-tail configuration for a common research model is presented, with focus on the aerodynamic design of the wing. Here, a contemporary transonic supercritical wing design is developed with aerodynamic characteristics that are well behaved and of high performance for configurations with and without the nacelle/pylon group. The horizontal tail is robustly designed for dive Mach number conditions and is suitably sized for typical stability and control requirements. The fuselage is representative of a wide/body commercial transport aircraft; it includes a wing-body fairing, as well as a scrubbing seal for the horizontal tail. The nacelle is a single-cowl, high by-pass-ratio, flow-through design with an exit area sized to achieve a natural unforced mass-flow-ratio typical of commercial aircraft engines at cruise. The simplicity of this un-bifurcated nacelle geometry will facilitate grid generation efforts of subsequent CFD validation exercises. Detailed aerodynamic performance data has been generated for this model; however, this information is presented in such a manner as to not bias CFD predictions planned for the fourth AIAA CFD Drag Prediction Workshop, which incorporates this common research model into its blind test cases. The CFD results presented include wing pressure distributions with and without the nacelle/pylon, ML/D trend lines, and drag-divergence curves; the design point for the wing/body configuration is within 1% of its max-ML/D. Plans to test the common research model in the National Transonic Facility and the Ames 11-ft wind tunnels are also discussed

    Drag Prediction for the NASA CRM Wing-Body-Tail Using CFL3D and OVERFLOW on an Overset Mesh

    Get PDF
    In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes

    Contributions to the Sixth Drag Prediction Workshop Using Structured, Overset Grid Methods

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143028/1/1.C034486.pd

    Slotted Aircraft Wing

    Get PDF
    An aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one slot is defined by the wing during at least one transonic condition of the wing. The slot may either extend spanwise along only a portion of the wingspan, or it may extend spanwise along the entire wingspan. In either case, the slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition

    Drag Prediction for the DLR-F6 Wing/Body and DPW Wing using CFL3D and OVERFLOW Overset Mesh

    Get PDF
    A series of overset grids was generated in response to the 3rd AIAA CFD Drag Prediction Workshop (DPW-III) which preceded the 25th Applied Aerodynamics Conference in June 2006. DPW-III focused on accurate drag prediction for wing/body and wing-alone configurations. The grid series built for each configuration consists of a coarse, medium, fine, and extra-fine mesh. The medium mesh is first constructed using the current state of best practices for overset grid generation. The medium mesh is then coarsened and enhanced by applying a factor of 1.5 to each (I,J,K) dimension. The resulting set of parametrically equivalent grids increase in size by a factor of roughly 3.5 from one level to the next denser level. CFD simulations were performed on the overset grids using two different RANS flow solvers: CFL3D and OVERFLOW. The results were post-processed using Richardson extrapolation to approximate grid converged values of lift, drag, pitching moment, and angle-of-attack at the design condition. This technique appears to work well if the solution does not contain large regions of separated flow (similar to that seen n the DLR-F6 results) and appropriate grid densities are selected. The extra-fine grid data helped to establish asymptotic grid convergence for both the OVERFLOW FX2B wing/body results and the OVERFLOW DPW-W1/W2 wing-alone results. More CFL3D data is needed to establish grid convergence trends. The medium grid was utilized beyond the grid convergence study by running each configuration at several angles-of-attack so drag polars and lift/pitching moment curves could be evaluated. The alpha sweep results are used to compare data across configurations as well as across flow solvers. With the exception of the wing/body drag polar, the two codes compare well qualitatively showing consistent incremental trends and similar wing pressure comparisons

    Comparison of NTF Experimental Data with CFD Predictions from the Third AIAA CFD Drag Prediction Workshop

    Get PDF
    Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level

    Summary of the Third AIAA CFD Drag Prediction Workshop

    Get PDF
    The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration

    In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions

    Full text link

    Summary of the Fourth AIAA CFD Drag Prediction Workshop

    Get PDF
    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation
    corecore